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1. Introduction

the fundamental sampling error (Fse) is the only er-
ror defined in Pierre Gy’s Theory of Sampling (Gy, 

1967; 1979; 1992) that can never be eliminated and 
is related to the constitution or intrinsic heterogeneity 
(IH) of the material in question. to calculate the rela-
tive variance of the fundamental sampling error, s2

FSE 
(equation 1), for a certain sample taken from a certain 
fragmented lot, crushed to a certain size, the intrinsic 
heterogeneity of the lot (IHL) must be estimated, which 
can be done theoretically applying the Gy’s material-
characterising factors, or experimentally performing 
heterogeneity tests. 

             [1]
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AbstRACt

The fundamental sampling error (FSE) is generated whenever a sample with mass MS is randomly selected, fragment 
by fragment, each with the same probability, from a particulate material lot with mass ML. FSE represents the sam-
pling error between the actual (but unknown) grade of a lot and the grade estimated from a selected sample. This 
is the smallest possible error for a sample selected under ideal conditions, hence the term “Fundamental Sampling 
Error”. FSE is characterized by its variance, calculated relative to the measured grade of the lot, using the well-
known “Gy’s formula”. The variance of FSE can either be calculated theoretically by applying a set of material factors 
or can be estimated experimentally by conducting empirical heterogeneity tests to estimate the constant factor of 
constitution heterogeneity, aka the “Intrinsic Heterogeneity of the Lot,” IHL. Several ‘competing’ ways to conduct 
heterogeneity tests and to calculate IHL have been proposed historically, but a perennial question in the sampling 
community is: “Which procedure and formulation reveal the actual variance of the fundamental sampling error?” 
To this day, this question has not been answered to the satisfaction of everybody, because (to paraphrase Edward 
Deming) “without data, you’re just another person with an opinion,” and no study has so far proven superior validity 
of one method over another. This paper surveys and explains, in a simplified way, the main experimental metho-
dologies and formulations for estimating the variance of the fundamental sampling error, highlighting the many 
remaining challenges of heterogeneity testing, which can be seen as a most fascinating topic, however, because of 
its complexity. It is possible that no singular best approach should be sought in view of the highly complex realm 
of economic geology and its many types of ore and mineralisation.

where s2
FSE is the relative variance of the fundamental 

sampling error, MS is the mass of the sample (given in 
g), ML is the mass of the lot (given in g), c, f, g, and 
l are the four Gy’s factors that characterise a specific 
material (dimensionless, except c, given in g/cm3), and 
d is the nominal top-size of the fragments or d95 (given 
in cm).

the amira metal accounting code of practice (2007) 
states that there are three basic methods that can be 
used for determining the value of IHL: (1) individual 
particle analysis, also known as the ‘50 (or more) pie-
ce analysis’ method, (2) use of scanning electron mi-
croscope data from particle sections, and (3) multiple 
sample analysis. the code warns that these methods 
all have their limitations. 
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according to chieregati (2024), there are also three 
main methods for experimentally determining the va-
lue of IHL: the original heterogeneity test (gy, 1988; 
pitard, 1993) with its several variations, the sampling 
tree experiment (minnitt et al., 2007), and the segre-
gation free analysis (minnitt et al., 2011), from whose 
results it is possible to calculate the variance of the 
fundamental sampling error. 

the question that looms high is: Which test reveals the 
true s2

FSE and which one reflects what happens in the 
daily reality of sampling processes? 

the aim of this article is to present to the reader the 
existing methodologies as well as their simplified ma-
thematical approaches, but deliberately not to answer 
the cardinal question above. chieregati et al. (2023) 
proved that the tests yield different results, however, 
to this day, it has not yet been proven which of them 
allows for a more accurate estimation of IHL and, con-
sequently, of s2

FSE. despite considerable theoretical and 
practical efforts, the issue remains open (see sections 
Discussion and Conclusions for some reflections on why 
this may be the case).

2. metodologies: to select indivi-
dual fragments or to split the lot?
this section presents the experimental pro-
cedures of the main heterogeneity tests pro-
posed over the years, starting with pierre gy, 
almost five decades ago… Note that different 
notations can be assigned to the same varia-
ble. this paper follows the notation from the 
original authors’ work. 

2.1 Pierre Gy’s 50-fragment method

the “50-fragment method” was proposed 
by pierre gy in his 1988 book, “Hétérogénéité, 
Échantillonage, Homogénéisation” (gy, 1988), 
on which the first and second editions of 
Francis Pitard’s books (1989a; 1989b; 1993) 
were based. Item 4.11 (p. 102) of Gy’s book is titled 
“experimental estimation of the intrinsic heterogeneity 
ihl – the so-called 50/100 fragment method” (Esti-
mation expérimentale de l’invariant d’hétérogénéité IHL 
– Méthode dite “des 50/100 fragments”, in French) and 
describes a method of experimentally estimating the 
intrinsic (‘invariant’) heterogeneity of the lot, IHL. 

the operational procedure proposed by gy (1988) is si-
milar to that presented in his previous works (gy, 1975; 
1982). 

While the experimental procedure is practically the 
same, the interpretation of the results differs signifi-
cantly. 

the newest approach described by gy (1988) is simp-
ler than the one described earlier because it does not 
involve measurement of the volume of fragments, an 
operation little appreciated by practitioners and highly 
imprecise:

1. collect randomly, one by one, at least 50, preferably 
100 fragments Fi (i = 1, 2, ..., NF) belonging to the 
coarsest size class of the material lot under study. 
this can be done by operating with the material re-
tained on the d/2 sieve (Figure 1) – if such sieving 
can be performed – or simply by visually select-
ing the coarsest fragments ‘manually’. The set of all 
fragments Fi collected constitutes the lot E1.

2. Wash the fragments (unless otherwise indicated) 
and dry them.

3. Weigh them dry, obtaining their individual masses 
Mi.

4. analyse each fragment for all critical components 
(analytes): contents ai, bi, etc.

Figure 1:  Coarsest size class of the material lot under study 
retained on the d/2 sieve.

C
re

di
t:

 A
. C

. C
hi

er
eg

at
i; 

us
ed

 w
it

h 
pe

rm
is

si
on

.

according to François-Bongarçon (2024), it is advisa-
ble to collect fist-sized fragments so that the mass is 
adequate for preparation and chemical analysis. other-
wise, analysing a single fragment becomes unfeasible, 
leading to the method proposed as follows.
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2.2 AusIMM’s modified 50-piece test

The “Modified 50-piece test” suggests that it is the 
practitioner’s decision to either select 50 individual 
fragments or 50 groups of individual fragments, each 
group composed of an equal number of fragments, se-
lected one by one, randomly. The modified test presen-
ted by the ausimm (2023) does not specify how many 
fragments each group should contain, so the profes-
sional has some leeway and may consider a number 
of fragments representing the mass of the subsample 
required for physical preparation in the laboratory.

The modified 50-piece test protocol, described below, 
essentially follows Gy’s “50-fragment method” ap-
proach:

1. select at least 50 individual (or subsamples consis-
ting of groups of) fragments from the coarsest size 
class of a bulk sample with mass M.

 a. note that the coarsest size class ranges from d/2 
to d, with d being the nominal top size or d95.

 b. individual particles may be selected from the 
coarse size fraction after screening, or by visual 
estimate, which is often adequate in the case of ores 
with a large top size.

2. dry the selected fragment/subsample separately.
3. measure the dry mass Mj of each fragment/subsam-

ple.
4. crush and pulverise each fragment/subsample se-

parately to produce a pulp that is sufficiently fine 
(<150 μm) to serve as an analytical test portion.

5. determine the concentration aj of each fragment/
subsample.

2.3 Simplified 4-size-class hetero-
geneity test

Also based on the “Modified 50-piece test”, 
there are two ways to perform the hetero-
geneity test when aiming to obtain IHL for 
more than one size fraction: (1) dividing the 
initial lot (ideally 250-500 kg) into four equal 
parts, crushing each part to a different top 
size, d, and then screening each part down 
to d/2; or (2) screening the entire lot (250-
500 kg) into four different size fractions and 
performing the test for each size fraction se-
parately. Because in the second method the 
lot is screened at the beginning, rather than 
being crushed into four different size classes 

and then screened, it was called the “simplified 4-size-
class heterogeneity test” (sht).

For both methods, the selection of subsamples must be 
done separately for each size class, as described below:

1. if the material is wet, dry the entire lot before st-
arting the test.

2. screen – or crush and screen – the lot into four 
size fractions, starting with the top size class  
(−d95+d95/2).

3. spread the material of each size class evenly on a 
grid previously drawn with masking tape, ensuring 
that no fragment overlap with other fragments.

4. select at least 50 subsamples, made of groups of 
n-fragments, from each size class. to give all frag-
ments the same probability of selection, the sub-
samples are composed of one fragment randomly 
collected from each cell of the grid, making up 50 
n-fragment subsamples, as n is the number of cells. 
note that the cell sizes vary according to the par-
ticle size fraction.

5. measure the dry mass Mq of each subsample.
6. crush, pulverise, and split each subsample separa-

tely to serve as an analytical sample.
7. determine the grade aq of each subsample.

Figure 2 shows an example of n-fragment subsamples 
being produced from the -½”+¼” size class. in this 
example, n = 90 and each subsample will be made of 
90 fragments (6 × 15 grid cells). 

Figure 2  Fragments being collected during the simplified  
 4-size-class heterogeneity test (-½”+ ¼” size  
 class).
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The simplified heterogeneity test procedure is schema-
tised in Figure 3, where 50 n-fragment subsamples are 
generated. consequently, the total number of subsam-
ples will be 200 (4 size fractions × 50 subsamples). 
it is important to emphasize that the test can also be 
performed using three size fractions instead of four, 
indeed also with an even higher number of size frac-
tions – where and when deemed necessary (of course 
at a greatly increased workload). the idea is to have 3, 
or 4 points (or even more) in a graph to calibrate the 
sampling constants, which will be detailed in the next 
section.

2.4 sampling tree experiment and segregation 
free analysis 

the sampling tree experiment (ste) was proposed by 
François-Bongarçon (1993; 1998; 2008) and is well 
described with a practical example by minnitt et al. 
(2007). the segregation free analysis (sFa) was propo-
sed by minnitt, François-Bongarçon and pitard (2011). 

the experimental procedure of both methods is similar 
and is based on the binary sampling tree. The difference 
is the way each size class is prepared and the number 
of size classes to be tested: (1) in the ste, the initial lot 
(approx. 60 kg) is divided into four equal parts, after 
which each part is crushed to a different top size to be 
tested; (2) in the sFa, the initial lot (approx. 200 kg) 
is screened in fourteen different size fractions to be 
tested. the following steps are common for both tests:

1. after preparing the four or fourteen size classes, 
riffle split each size class material into a series of 32 
subsamples, resulting from five splitting stages and 
forming the binary sampling tree shown in Figure 4.

2. For the ste, two subsamples can be chosen at ran-
dom from each size fraction for granulometric ana-
lysis to check the d95, leaving 30 subsamples per size 
fraction for chemical analysis.

3. measure the dry mass MS of each subsample.
4. crush, pulverise, and split each subsample separa-

tely to serve as an analytical sample.
5. determine the grade of each subsample.

Figure 3:  Simplified heterogeneity test procedure for each size fraction (Chieregati et al., 2023).
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Figure 4:  STE and SFA sampling tree procedure for each size class (adapted from Minnitt et al., 2007).

Figure 5 shows the STE/SFA riffle splitting procedure, 
where 32 subsamples from each size fraction are ge-
nerated, two for granulometric analysis (ste) and the 
remaining 30  (STE)/ 32  (SFA) for chemical analysis. 
consequently, the number of subsamples will be 120 
(4 size fractions × 30 subsamples) for the STE and 448 

(14 size fractions × 32 subsamples) for the SFA. It is 
important to emphasize that the sFa can be performed 
using a different number of size fractions. Chieregati 
et al. (2023) used only four size fractions and called 
the modified test “simplified segregation free analysis” 
(ssFa).

Figure 5:  Material of the -½”+ ¼” size class being riffle split during the STE/SFA procedure.
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3. Formulations: to calculate or to  
 calibrate the sampling constants?

This section presents the simplified mathematical ap-
proach on which each heterogeneity test described in 
the previous section is based. Note that different no-
tations can be assigned to the same variable. out of 
respect, this paper follows the notation in the original 
authors’ work. 

3.1 Pierre Gy’s 50-fragment method

With the results of the mass and grade determined for 
each of the 50 selected fragments, and using pierre 
Gy’s original formula (Gy, 1988, p. 360):

           [2]

where s2
EF is the relative variance of the fundamental 

error, P is the selection probability, ME is the mass of 
the sample (given in g), ML is the mass of the lot (given 
in g), and IHL is the intrinsic (‘invariant’) heterogeneity 
of the lot (given in g), it is possible to calculate s2

EF after 
the experimental estimation of IHL described as follows:

1. calculate the mass ME1 of the lot E1:

                [3]

2. calculate the grade aE1 of the lot E1:

                [4]

3. calculate the unbiased random estimator EST [IHE1] of 
the intrinsic heterogeneity of the lot E1:

              [5]

4. evaluate the proportion ML1/ML of the class. if the 
lot E1 is obtained by sieving a lot E with a mass ME, the 
estimator ML1/ML = ME1/ME can be used. in the absence 
of objective information, the average value of 0.30 can 
be adopted.

5. calculate the estimator of [IHL]1, which is the stan-
dard estimator of IHL when [IHL1] approaches [IHE1]:

        [6]

according to gy, the validity of this method depends 
mainly on the ‘invariance’ of the intrinsic heterogeneity 
IHL1, which is a random function of the mass ML1.

3.2 AusIMM’s modified 50-piece test

With the results of mass and grade of each of the 50 
fragments/subsamples, the following procedure should 
be carried out for the estimation of IHS and s2

r:

1. calculate the combined dry mass MS of all fragments/
subsamples as: 

                [7]

2. calculate the combined concentration aS of all frag-
ments/subsamples as: 

                [8]

3. calculate the parameter IHS as: 

               [9]

4. evaluate the mass proportion MA/M, where MA is an 
estimate of the ore weight retained in the size class 
d/2 to d. For example, if the +12.5 mm size fraction 
in a <25 mm mill feed stream constitutes 25% of the 
total material flow, the ratio MA/M would be expressed 
as 0.25. 

5. calculate the constitution heterogeneity IH of the ore 
as: 

                [10]

6. the relative variance Vr or s2
r
  is calculated as: 

                [11]

3.3 Simplified 4-size-class heterogeneity test

With the results of mass and grade of each of the 50 
subsamples per size fraction:

1. calculate the combined mass MQ of all subsamples:

                [12]

2. calculate the weighted average grade aQ of all sub-
samples:

                [13]
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3. calculate the unbiased random estimator EST IHL of 
the intrinsic heterogeneity of the lot. note that pierre 
Gy’s Equations 5 and 6 can be rewritten as Equation 14 
(refer to Pitard, 1993, p. 176):

              [14]

4. Use Gy’s granulometric factor g (0.25 for uncalib-
rated material and 0.55 for calibrated material) as the 
mass proportion of the top size fragments for each size 
class.

5. calculate the nominal diameter of the fragments, 
where dMAX and dMIN are the openings (in cm) of the up-
per and lower screens of each particle size fraction, re-
spectively:

           [15]

6. plot IHL × dN on a log-log graph and the power re-
gression line (example in Figure 6). in the regression 
line equation y = axb, y represents IHL, a represents K, x 
represents dN, and b represents α of the IHL calibrated 
formula, K and α being the sampling constants:

                [16]

7. the relative variance of the fundamental sampling 
error, s2

FSE, is then calculated as:

            [17]

it is important to emphasize that calibrating the sam-
pling constants K and α (François-Bongarçon, 1998; 
minnitt et al., 2007; minnitt et al., 2011; ganguli et al., 
2017; Bortoleto et al., 2019; chieregati et al., 2023) is 
manifestly not unanimously accepted as the best alter-
native among sampling experts, between which rather 
adverse attitudes have been prevalent at times. how-
ever, a preliminary study on aluminium ores (marques 
and Chieregati, 2023) shows a significant correlation 
between the theoretical IHL calculated using Gy’s ma-
terial factors and the experimental IHL calculated using 
the calibration of K and α through the simplified 4-si-
ze-class heterogeneity test. this is encouraging as it 
shows the way forward for more studies in an incredib-
ly complex mineral realm (see sections discussion and 
conclusions).

The calibration proposition based on the simplified 
4-size-class heterogeneity test suggests that a log-
log plot be constructed with the nominal fragment size 
dN on the x-axis and the corresponding values of EST 
IHL on the y-axis. By plotting the power regression line 
of the four points on the graph, estimates of the para-
meters K and α from equation 16 are obtained, where K 
is a constant factor representing the product of all Gy’s 
material factors, and α is the exponent of the nominal 
fragment size, equal to 3 in Gy’s original formula and 
determined by the slope of the regression line on the 
heterogeneity graph.

Figure 6:  Example of sampling constant calibration using the simplified 4-size-class heterogeneity test.
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3.4 sampling tree experiment and segregation 
free analysis 

although the ste and sFa experiments involve more 
complex data processing, including removal of out-
liers, reduction of the analytical data, calculation of the 
standardised variance, calculation of the liberation size, 
etc., the author chose to present a simplified formula-
tion, focusing solely on the calibration of the sampling 
constants K and α. For a detailed description of all data 
processing steps, please refer to François-Bongarçon 
(1993; 1998; 2008) and minnitt et al. (2007; 2011). 

With the results of mass and grade of each of the 30-
32 subsamples per size fraction:

1. calculate the total relative variance σ2 of the data for 
each size fraction.

2. calculate the residual relative variance σR
2 for each 

size fraction, subtracting the analytical variance σA
2 

from the total variance: 

          [18]

note: according to minnitt et al. (2011) and François-
Bongarçon (2024), this adjustment to the variances is 
necessary, because it has influence on the values for 
the slope α and the intercept K, and probably affects 
the series with the smaller dN. the variance derived 
from the 30-32 chemical analyses of each size fraction 
is a multi-stage variance that includes both the pulp 
variance and the analytical variance. 

the authors state that it is important that the varian-
ces from the analytical (pulverised) stage are subtrac-
ted from each of the respective multi-stage variances 
(sets of 30-32 analyses) to provide an unencumbered 
single-stage variance.

3. Rearrange the simplified Gy’s formula (Equation 19) 
to give a linear equation in logarithmic graph (equation 
20):

              [19]

             [20]

4. plot ln(σR
2*MS) × ln(dN/MAX) on a graph and the linear 

regression line (example in Figure 7). For the ste, plot 
each point for its nominal top size dN; for the sFa, in 
turn, plot each point for its dMAX (upper screen opening 
of the size class), not the average diameter.

5.the slope of the line provides a value for α, while the 
constant is the intercept on the y-axis and provides an 
estimation of a value for K. the regression line in Fi-
gure 7 shows α = 1.0379 and K = e3.8304 = 46.08 (as for 
equation 20).

6. the relative variance of the fundamental sampling 
error, σ2

FSE, is finally calculated as:

               [21]

Figure 7:  Example of sampling constant calibration using the SFA (Minnitt et al., 2011).
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4. discussion

after the brief review presented in this paper, the ques-
tion “which procedure and formulation reveal the ac-
tual variance of the fundamental sampling error?” re-
mains unanswered, despite ongoing studies. chieregati 
et al. (2023; 2024) studied different types of ore and 
concluded that the simplified segregation free analysis, 
compared to the simplified 4-size-class heterogene-
ity test, tends to underestimate the sampling constant 
α and to overestimate both the sampling constant K 
and the total sFSE of the sampling protocol. two thirds 
of the 16 chemical elements analysed in these stud-
ies presented lower values of α and higher values of 
K and sFSE. these trends are partially explained by pi-
tard and François-Bongarçon (2011), who state that 
there are two main types of heterogeneity tests: (1) to 
estimate exclusively the variance of the fundamental 
sampling error (Fse), or (2) to estimate the variance 
of the quality fluctuation error, component 1 (QFE1), 
which includes both the fundamental sampling error 
and the grouping and segregation error (GSE). The first 
type of test estimates exclusively the intrinsic consti-
tution heterogeneity of the lot because the samples are 
composed by collecting individual fragments one by 
one at random, the only condition under which gse will 
cancel; the second type includes the distribution het-
erogeneity between extracted replicate splits or groups 
of fragments. according to these authors, the variance 
of QFe1 better reflects what is happening in daily reality 
in sampling protocols.

Based on all available results from empirical studies 
that can be found in the open literature, there does 
not seem to be conclusive systematic patterns for a 
‘best’ heterogeneity test behaviour representing spe-
cific types of ore or mineralisation across the mining 
and exploration industry. rather there is a strong anal-
ogy to the findings of Engström (2017) and Engström 
and esbensen (2017) in the study of blast hole sam-
pling versus reverse circulation drilling, which found a 
similar lack of correlation with respect to specific ore 
types. each case is best served with being evaluated 
individually.

one might be tempted to speculate that a two param-
eter (K, α) mathematical relationship may be too simple 
a formalism for covering the extremely complex realm 
of Geology. With so many different types of minerali-
sation and ores, there is perhaps no reason to expect a 
singular universal best practice. 

Pierre Gy himself once wrote (Gy, 1982, p. 279): “[…] 
the method which was developed 25 years ago, breaking up 
as it does the fundamental variance into a product of simple 
factors, precises remarkably well the influence of the various 
characteristics of the material to be sampled.” according 
to gy, then, applying the set of four material-charac-
terising factors (equation 1) for each type of ore may 
still be the best option for calculating the relative vari-
ance of the fundamental sampling error.

5. Conclusions
even though a much greater discussion and detail-
ing about heterogeneity studies could be made – and 
in fact has already been done by François-Bongarçon 
(2008; 2024) –, the aim of this paper is only to pre-
sent the general outlines of different experimental 
procedures and data processing. there will always be 
a need for carefully planned and meticulously executed 
empirical characterisation of the material for which a 
quantitative heterogeneity characterisation is needed, 
either to estimate s2

FSE or to calculate realistic optimal 
sample masses.

the most important issue is to keep in mind that de-
pending on how the heterogeneity test is conducted 
and how the data is processed, different results can be 
obtained and, consequently, different conclusions will 
be drawn. according to François-Bongarçon (2024), 
designing the heterogeneity experiment may be the 
most important step which, when poorly done, can 
trigger irreversible damage to the conclusions of the 
study. the author addresses the main problems of het-
erogeneity studies in detail and affirms that “on-going 
recipes and publications are unclear and often false, […] 
articles are never supposed to be recipes to follow blindly, 
instead they should be viewed at most as enlightened sug-
gestions” (François-Bongarçon, 2024, p. 21). 

this is exactly the didactic purpose of this paper: to 
bring the complex heterogeneity tests to the readers’ 
attention, so they can reflect on them, study the dif-
ferent methods in greater depth, and draw their own 
conclusions to conduct their own studies, rather than 
claiming that one approach has superior validity over 
another. and perhaps one day the cardinal question will 
have a definitive answer.

the seed has been sown... who would like to take on 
this challenge?
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