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In the theory of sampling, variograms have proven to be a powerful tool to characterise the heterogeneity of 1-dimensional lots. Yet its 
definition and application in sampling for mineral processing have always been limited to one variable, typically ore grade. However 
this definition is not adapted to sampling for mineral processing where samples contain multiple properties of interest, i.e. variables, 
such as multiple element grades, grain size, etc. For such cases, the multivariable variogram, originally developed for spatial data 
analysis, can be used to summarise time variation of multiple variables (e.g. ore characteristics which are important for the process) 
and highlights the multivariate time auto-correlation of these variables. A case study of low-grade kaolin residue sampling for gravity 
processing shows that the multivariogram summarises the overall variability and highlights a periodic phenomenon when all variables 
are taken into account. This example illustrates the potential of the multivariable variogram compared to the classical approach.

Introduction

I
n every mining project, economic improvement goes through 
metallurgical assessment by means of series of metallurgical 
tests performed on the so-called process samples. Process 
samples are typically extracted from flowing stream, the so-

called one-dimensional (1D) lots, at regular interval to obtain rep-
resentative samples regarding the grade, mineralogical or physical 
characteristics. The metallurgical tests allow settling the best oper-
ating parameters which will allow reaching the desired recoveries 
and grades, and therefore improve the process. The effectiveness 
of these process improvements will depend directly on the repre-
sentativeness of the samples initially collected for the tests.

The Theory Of Sampling (TOS) developed by Pierre Gy1 gives 
a simple set of rules to eliminate sampling biases and minimises 
the sampling error (variance).TOS introduced the semi-variogram 
(referred as variogram in the text) adapted to sampling purpose as 
a way to characterise the autocorrelation between the units of a 
process and the heterogeneity of 1D lots. This tool provide critical 
information on2,3:

 ■ process variability over time and the magnitude of the different 
variability components,

 ■ the lot mean and the uncertainty of a single measurement with 
respect to the autocorrelation phenomenon,

 ■ the optimal design and scheme (i.e. random, stratified or system-
atic) for the sampling protocol.

In a typical variographic experiment, a set of N discrete units (i.e. 
increments) is collected from a one-dimensional flowing stream 
along a time period, representing the 1D lot. The relative hetero-
geneity associated with a property of interest, A, in a single unit of 
mass Mi, expressed in the proportion ai, is defined as:
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where M̄i is the average mass increment and aL the proportion of 
component A in the lot. This relative heterogeneity is dimension-
less and hence the component A can describe any intensive prop-
erty that characterise the material, e.g. grade, size distribution, 

hardness or specific gravity. The variogram vj is calculated for a suf-
ficient number of units (up to a maximum of N/2) using the equation:
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where j is a dimensionless lag-parameter, defining the distance 
between two increments. Thus, the variogram describes the vari-
ation, due to component A, between units as a function of the dis-
tance between them. An extensive description of the variographic 
technique and its practical application can be found in reference 
papers2–4.

However, in the field of mineral processing, results from metal-
lurgical tests often depends on several characteristics of the sam-
ple. Thus the samples need to be representative not only for one 
property (i.e. component) but for a certain range of properties. In 
these situations the practical approach is to identify the property 
with the most heterogeneous distribution and to take only this 
property into account. The main difficulty of this approach is that it 
doesn’t account for the multivariate nature of heterogeneity, which 
can lead to underestimation of significant heterogeneity between 
close neighbours5. The importance of taking into account the multi-
variate character of the heterogeneity is well-known in geostatistics 
and particularly for spatial data analysis. The first solution to this 
problem was proposed by Oliver and Webster6, who suggested to 
perform a Principal Component Analysis (PCA) on the data and to 
study the variogram of the first few principal components. While 
only a few studies have recently applied this approach to chem-
ometrics, they show the usefulness of a variographic modelling 
based on PCA scores7,8.

The purpose of this paper is to introduce the multivariate vario-
gram, originally developed for spatial data analysis by Bourgault and 
Marcotte9, which is defined in a way similar to that of the traditional  
variogram but in a multi-dimensional space. This new tool could 
be more adapted to process sampling of one-dimensional lots as 
it takes all properties of interest into account. To illustrate this, a 
variographic study is performed on a process stream from a kaolin 
mining plant which has been sampled for metallurgical testing.
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Multivariate variogram applied to process 
sampling
We now assume that the heterogeneity contribution is a multivariate 
measure. If a material is characterised by a number p of param-
eters, the heterogeneity could therefore be represented as a vector 
of p individual heterogeneity contributions:
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The univariate definition of the variogram is thus no longer 
adapted and need to be improved. G. Bourgault and D. Marcotte 
were the first to formalise the principle of a multivariate variogram9 
and it has been widely used for spatial data analysis and map-
ping since5,10. For every metric M it is possible to calculate the 
multivariate variogram Vj by analogy to the univariate case using 
the equation:
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where t symbolise the transpose and M is positive definite p × p 
matrix which defines the metric in the calculation of the “distance” 
between the units. This metric defines the relation between the 
variables, such metrics are the identity matrix (Euclidian distance). 
The multivariate variogram is therefore simply the sum of the uni-
variate variograms, or the inverse of the variance-covariance matrix 
(Mahalanobis distance)9.

In contrast to variographic analysis of PCA scores, this approach 
captures all variables in a single variogram. Thus it is possible to cal-
culate the auxiliary functions and consequently the error generating 
functions for each sampling scheme using classical point-by-point 
calculation3, with the exception of the random selection scheme. 
Indeed the error generating function associated to this sampling 
scheme is equal to the constitutional heterogeneity of the lot (CHL) 
which is defined as the variance of the (multivariate) heterogeneity 
contribution of all units making up the lot L:
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Material and methods
Material sampling
The samples used in this work were collected with the help of 
Imerys Ltd., UK. The primary objective of this sampling exercise 
was to design a protocol which allows collecting a representative 
sample of a shift (of approximately 2 h) for metallurgical testing. A 
total of 50 samples (of approximately 25 kg) were collected from the 
secondary hydrocyclones underflow stream of a kaolin dry mining 
plant operating at an approximate flow rate of 15 tons/hours cor-
responding to a micaceous residue which is studied as a potential 
source of metals11. Note that the increments are manually extracted 
every 2 minutes systematically using a by-pass which diverts the 
whole stream into the sample collector. This sample extraction pro-
tocol may lead to an Increment Extraction Error (IEE) which is dif-
ficult to assess.

All increments were weighted then dried directly without dewa-
tering to avoid fine particles loss. Once dried the samples were 
weighted to estimate their initial pulp density and then riffled to 
obtain subsamples for particle size analyses. The remaining sam-
ples were then crushed and riffled alternatively in accordance with 

the theory of sampling to obtain representative subsamples for 
chemical analysis12.

Analytical methods
The studied material has been sampled with the objective of metal-
lurgical testing by gravity concentration. Thus the analytical meth-
ods chosen for the representativeness study must be adapted to 
this objective. In addition to classical chemical analysis, the critical 
characteristic of a material for gravity concentration is its size dis-
tribution13.

Chemical Analysis. A set of 18 elements/ oxides were ana-
lysed, among which LREE (La, Ce, Nd), Nb and Sn. Representa-
tive 10 g aliquots were mixed with Cereox wax (Fluxana® GmbH 
& Co. KG) and pressed into pellets. Chemical analyses were car-
ried out by Energy Dispersive X-Ray Fluorescence spectroscopy 
(ED-XRF) using a S2 Ranger (Bruker Corporation) at the GeoRes-
sources laboratory (Vandoeuvre-lès-Nancy, France). The calibra-
tion of the XRF used results from Inductively Coupled Plasma 
Atom-Emission analysis (ICP-AES) for major elements and mass 
spectral analysis (ICP-MS) for the trace elements realised at the 
Service d’Analyses des Roches et des Minéraux (SARM-CNRS, 
Nancy, France).

Particle size analysis. A range of 4 parameters have been 
retained to describe the particle size distribution of the material: 
the D10, D50, D90 and Rosin R ammler (RR) slope which repre-
sent the particle sizes below which 10%, 50% and 90% of the 
particles are distributed respectively. And the slope of the size dis-
tribution using the Rosin-Rammler model13. Particle size analysis 
has been performed by laser light scattering using a Helium-Neon 
Laser Optical System MASTERSIZER 3000 (Malvern instruments 
Ltd.) coupled with a Hydro Extended Volume (EV) sample disper-
sion unit.

Case study
Experimental individual variograms
The analytical results of 7 selected variables (LREE, Nb, Sn, D10, 
D50, D90 and RR slope) for 50 micaceous residue samples are 
presented in Figure 1. The variation illustrates the stream material 
heterogeneity with time. The results show that, for variables (D10, 
Nb, Sn, and LREE), the variability expressed by the entire profile is 
equal to the global variation interval represented by the mean ±2s 
interval, whereas for variables (D50, D90, and RRslope), the vari-
ability seems associated with slight trends. However, there are no 
significant outliers in the profiles. Thus the analytical results can be 
used directly without any pre-treatment.

It is difficult to interpret from these different scales profiles which 
variable contributes most to the heterogeneity of the lot. One can 
thus compare the individual heterogeneity contribution, calculated 
using equation (1) for each variable (Figure 2). It is observed that the 
LREE content has the largest overall variability.

From these individual heterogeneity contributions the individual 
variograms are calculated using equation (2) and the nugget effects 
V0 are estimated by backward extrapolation (Figure 3A). The auxil-
iary functions noted wj and w¢j are shown in Figure 3C and D. The 
individual variograms distinguish two main groups, a high-sill vari-
ables group (LREE, D90 and Sn) and a low-sill variables group (D10, 
D50, RR Slope and Nb). The overall range is difficult to estimate 
using directly the variograms, but the auxiliary functions suggest 
an overall range around 5-7. The variograms of the low-sill groups 
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appear to ‘flat’ as well as the variogram of Sn. A minimum can be 
observed in the variogram of LREE at j = 15 indicating the exist-
ence of a possible cyclic fluctuation with a too long period of (i.e. 
j = 15 = 30 min) to see another minimum in the variogram. A similar 
observation is observed for the D90 variogram (Figure 3B). Indeed, 
a local minimum is observed at j = 7-9 and a tentative repetition at 
j = 20 (this can also observed for wj but not for w’j since the curve 
is too smooth). This suggests the existence of some periodic phe-
nomenon for the D90 with a rather short period of approximately 9 
lags (i.e. j = 9 = 18 min).

The classical conclusion at this point will be to focus the sampling 
protocol on the LREE content taking care of the periodic phenomena.

Figure 4 show the error generation functions for LREE accord-
ing to the sampling scheme which is used to choose a protocol 
with the lowest sampling variance. It can be seen that the 3 sam-
pling schemes are quite close but the systematic sampling stay 
the sampling scheme with the lowest variance. The recommended 

sampling protocol is thus hard to define it could be recommended 
to use a stratified random sampling or systematic sampling with at 
least 5 or 10 increments with a sampling frequency higher than two 
per period of 18 min and 30 min. Since the average shift duration 
is around 3h this would imply to sample not 5 or 10 but at least 20 
increments.

Experimental multivariograms
A multivariate analysis highlights the relationships between the 
variables which are not taken into account in classic variographic 
studies. Table 1 presents the correlation matrix for the selected 
7 variables . As predicted all the variables referring to the size 
distribution  are strongly to moderately correlated with the excep-
tion of D10 which only display moderate correlations (with D50 and 
D90) or no correlation at all (with RRslope). Sn and Nb are both 
moderately correlated with the D50 whereas LREE display a clear 
independency.

Figure 1. Analytical results characterising the variations of the geochemical compositions (Nb, Sn, and LREE) and size distributions (D10, D50, D90, and 
RR slope) during time, each unit being extracted at 2 min intervals. The dashed lines represent the mean ±2s of the analytical results. It can be seen that 
there is no significant outliers.
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The multivariogram is computed using formula (4) with Mahalano-
bis metrics (Figure 5). The general shape of the multivariogram is 
approximated by a smoothed curve with a spherical model14:
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Figure 2. Individual heterogeneity contributions hm of the 7 variables of interest for the 50 units.

Figure 3. (A) Experimental variograms Vj of the 7 variables of interest. (B) Experimental variograms Vj of 6 of the variables of interest without LREE. (C) 
Average first order integral wj and (D) Average second order integral w’j. A common range of approximately 5-7 lags (10-14 min) is observed.
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where s represent the sill of the variogram and r the range. The 
range suggested by the spherical model is around 11, which is 
twice the general range observed for the individual variograms. 

Two minimums at j = 9 and j = 20 on the multivariogram curve 
suggest a periodic phenomenon with a period of approximately 10 
lags (j = 10 = 20 min) which is a results of the periodic phenomena 
observed in the individual variograms. The multivariogram also dis-
plays a high sill of approximately 7, which is due to the metric used 
in the computation of the multivariogram. Hence the sampling vari-
ance is much more important too, and with 5 increments to make 
the final sample, the sampling variance is still about 0.67 and 0.25 
if 10 increments are collected (Figure 6). Based on this multivari-
ogram a sampling protocol could be to take at least 10 increments 
with a sampling frequency higher than two per period of 20 min.

The multivariogram has allowed proposing a more adapted sam-
pling protocol which takes into account a periodic phenomenon. 
However the estimated global variance with this approach is very 
high and implies a large number of increments should be sampled 
to achieve a reasonably lower sampling variation. This is a direct 
consequence of the choice of the variables of interest for the vari-
ographic study which all contribute at various degrees to the het-
erogeneity. Note that their importance for the process tested could 
be completely different from one variable to the other. Thus the 
sampler must pay attention to the choice of the variables of interest 
to avoid overestimation of the sampling variance. Another way to 
have a sampling variance more adapted to the tests for which the 
samples are collected would be to weight the variables by the mean 
of an adapted metric.

Figure 4. Plot of the error generating functions associated to the LREE 
content for the 3 sampling schemes as a function of the number of 
units/increments collected to make the final sample (Nu).

Figure 5. Multivariogram for the 7 variables of interest and fitted spherical model. The range given by the spherical model is approximately 11 with a sill 
around 7. However two minimums at j = 9 and j = 20 suggest a periodic phenomenon with a period of approximately 20 min.

Table 1. Correlation matrix for all the variables of interest. The high correlation coefficients (>|0.75|) are noted in italic.

Variables D10 D50 D90 RR Slope Nb Sn LREE

D10 1.00 0.61 0.62 -0.20 -0.24 -0.30 -0.25

D50 0.61 1.00 0.93 -0.78 -0.64 -0.64 0.02

D90 0.62 0.93 1.00 -0.88 -0.54 -0.54 -0.02

RR Slope -0.20 -0.78 -0.88 1.00 0.48 0.45 -0.09

Nb -0.24 -0.64 -0.54 0.48 1.00 0.52 -0.14

Sn -0.30 -0.64 -0.54 0.45 0.52 1.00 -0.09

LREE -0.25 0.02 -0.02 -0.09 -0.14 -0.09 1.00
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Conclusions
The multivariate approach of process variograms described in this 
work has allowed a better description of the heterogeneity of a 
material taking into account all the variables of interest simultane-
ously. This approach give to the sampler the opportunity to choose 
all the parameters that characterise the material for a given objec-
tives and to use the multivariate variogram as a summarising tool 
to describe the variability of this material and to design an adapted 
sampling protocol.

Acknowledgments
The authors wish to thank the Imerys Ltd., UK, and especially S. 
Moradi, P. Chauhan and A. Coe for their help during the sampling 
exercise. We are also grateful to S. Lightfoot and P. Budge for their 
advices and technical support. We thank C. Gauthier for its help in 
the sample preparation process. T.M.K. LE is also thanked for her 
work during her master project. This work has been financially sup-
ported by the European FP7 project “Sustainable Technologies for 
Calcined Industrial Minerals in Europe” (STOICISM), grant NMP2-
LA-2012-310645.

References
1. P. Gy, Sampling for Analytical Purposes. John Wiley & Sons, Chichester 

(1998).

2. P. Gy, “Sampling of discrete materials III. Quantitative approach—sam-

pling of one-dimensional objects”. Chemometrics and Intelligent Labora-

tory Systems. 74, 39–47 (2004). doi: http://dx.doi.org/10.1016/j.chem-

olab.2004.05.015

3. L. Petersen, K.H. Esbensen, “Representative process sampling for reli-

able data analysis—a tutorial”. Journal of Chemometrics. 19, 625–647 

(2005). doi: http://dx.doi.org/10.1002/cem.968

4. P. Minkkinen, “Practical applications of sampling theory”. Chemometrics 

and Intelligent Laboratory Systems. 74, 85–94 (2004). doi: http://dx.doi.

org/10.1016/j.chemolab.2004.03.013

5. G. Bourgault, D. Marcotte, P. Legendre, “The multivariate (co)vari-

ogram as a spatial weighting function in classification methods”. Math-

ematical Geology. 24, 463–478 (1992). doi: http://dx.doi.org/10.1007/

bf00890530

6. M.A. Oliver, R. Webster, “A geostatistical basis for spatial weighting in 

multivariate classification”. Mathematical Geology. 21, 15–35 (1989). 

doi: http://dx.doi.org/10.1007/bf00897238

7. P. Minkkinen, K.H. Esbensen, “Multivariate variographic versus bilinear 

data modeling”. Journal of Chemometrics. 28, 395–410 (2014). doi: 

http://dx.doi.org/10.1002/cem.2514

8. Z. Kardanpour, O.S. Jacobsen, K.H. Esbensen, “Soil heterogene-

ity characterization using PCA (Xvariogram) - Multivariate analysis of 

spatial signatures for optimal sampling purposes”. Chemometrics and 

Intelligent Laboratory Systems. 136, 24–35 (2014). doi: http://dx.doi.

org/10.1016/j.chemolab.2014.04.020

9. G. Bourgault, D. Marcotte, “Multivariable variogram and its application 

to the linear model of coregionalization”. Mathematical Geology. 23, 

899–928 (1991). doi: http://dx.doi.org/10.1007/bf02066732

10. R. Kerry, M.A. Oliver, “Variograms of Ancillary Data to Aid Sampling 

for Soil Surveys”. Precision Agriculture. 4, 261–278 (2003). doi: http://

dx.doi.org/10.1023/a:1024952406744

11. Q. Dehaine, L.O. Filippov, “Rare earth (La, Ce, Nd) and rare metals (Sn, 

Nb, W) as by-product of kaolin production, Cornwall: Part1: Selection 

and characterisation of the valuable stream”. Minerals Engineering. 

(2014). doi: http://dx.doi.org/10.1016/j.mineng.2014.10.006

12. L. Petersen, C.K. Dahl, K.H. Esbensen, “Representative mass reduction 

in sampling—a critical survey of techniques and hardware”. Chemomet-

rics and Intelligent Laboratory Systems. 74, 95–114 (2004). doi: http://

dx.doi.org/10.1016/j.chemolab.2004.03.020

13. B.A. Wills, T. Napier-Munn, Wills’ Mineral Processing Technology. Else-

vier (2005).

14. R. Webster, M.A. Oliver, Geostatistics for Environmental Scientists. John 

Wiley & Sons, Ltd, Chichester, UK (2007).

Figure 6. Plot of the error generating functions of the multivariogram for 
the 3 sampling schemes as a function of the number of units/increments 
collected to make the final sample (Nu).

http://dx.doi.org/10.1016/j.chemolab.2004.05.015
http://dx.doi.org/10.1016/j.chemolab.2004.05.015
http://dx.doi.org/10.1002/cem.968
http://dx.doi.org/10.1016/j.chemolab.2004.03.013
http://dx.doi.org/10.1016/j.chemolab.2004.03.013
http://dx.doi.org/10.1007/bf00890530
http://dx.doi.org/10.1007/bf00890530
http://dx.doi.org/10.1007/bf00897238
http://dx.doi.org/10.1002/cem.2514
http://dx.doi.org/10.1016/j.chemolab.2014.04.020
http://dx.doi.org/10.1016/j.chemolab.2014.04.020
http://dx.doi.org/10.1007/bf02066732
http://dx.doi.org/10.1023/a:1024952406744
http://dx.doi.org/10.1023/a:1024952406744
http://dx.doi.org/10.1016/j.mineng.2014.10.006
http://dx.doi.org/10.1016/j.chemolab.2004.03.020
http://dx.doi.org/10.1016/j.chemolab.2004.03.020

