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Common practice in sampling for the TOS erudite consists of using the sampling variance obtained from Gy’s numerical theory to 
build confidence intervals around the true sample value. This is usually done to characterise the ‘precision’ of the sample, and, by 
centring that interval on the sampled value, one states for instance that “the true value has 95% chances of being between values x 
and y”, those two values usually being centred on the sampled value”. The somewhat naïve rationale behind this practice is reviewed 
in some details and criticised. It is suggested the confidence interval of real interest to the user of the sampled value, is more difficult 
to define and more delicate and indirect to build. Some methods for doing so are examined and a methodology is recommended.

Introduction

G
y’s Theory of Sampling1 (TOS) has a powerful numeri-
cal section that gives us a wealth of information about 
the behaviour of a sample, provided we know enough 
about some physical characteristics of the matter being 

sampled and basic parameters about the sample such as its mass. 
Armed with it, we can in particular predict the variance we are likely 
to encounter should the sample be taken many times, i.e. charac-
teristics about the distribution of the possible sample values. That 
predicted variance, which measures the dispersion of that sample 
distribution, allows for a characterisation what is often termed the 
‘precision’ of the sample, or in other words, its goodness.

It is not uncommon then to use that variance to build some kind 
of a confidence interval around the obtained sample value to state 
where the true value of the variable to be measured may lie. Indeed, 
what is the use of the sampled value if we have no notion of what 
it really means regarding the unknown, true value we are trying to 
best guess? Building this confidence interval also clearly requires, 
implicitly or not, not only the variance, but also an idea of the distri-
bution type or shape.

This practice, however, can often be applied quite naively, as we 
are going to see, starting with the fundamental question: “What dis-
tribution exactly are we speaking about?”

Better definition of the problem
So, here we are, with a sample value in hand, and the ability to 
predict the dispersion variance attached to it. Now, experience and 
knowledge also give us an idea of the shape of the sample distribu-
tion:

 ■ Normal-like if the variance is relatively small (and the sample ‘pre-
cision relatively good); this is a consequence of the symmetri-
sation of such distributions when their variances diminish, itself 
deeply and implicitly rooted in the general mechanism underlying 
the famed Central Limit Theorem.

 ■ Lognormal-like or binomial-like in the opposite case.
We can therefore predict a ‘histogram of sorts’ of the possible 

sample values. And this, in practice, may not be hugely rigorous, 
but in reality, experience shows it works well enough: when that 
histogram is built experimentally as the result of repeated sampling, 
this method is usually reasonably validated. But there lies an often 
unseen difficulty: we then need to define very clearly the nature and 
full range of what it is, exactly, we are trying to guess.

When a sample is taken, hopefully in a representative fashion, 
we are obviously hoping to be able to use its value in lieu of the 
unknown, true value of the variable measured/estimated by that 
sampling operation, and we would like to know how imperfect 
doing so can eventually be. That is where a confidence interval may 
come into play: a very explanatory view to it consists of trying to 
attach probabilities to the unknown value underlying the sampling, 
saying for instance that there are 95% chances that it is in a spe-
cific, known interval around the obtained sample value.

To quickly understand/illustrate why using the sample distribution 
shape to do so is a rather naive idea, and for the sake of the exer-
cise, let us assume a true value T and that the sample distribution 
around it is skewed towards high values (‘to the right’) like in the 
3-bar histogram of Figure 1 where the true value is the centre value 
of the 3 possible sample outcomes. When we take a sample, we 
do not know the true value, and in this simplistic case, all we know 
is that the sample is one of the possible outcomes, in this case one 
of three, but we do not know which one.

Going in turn to every possible sample value in the distribution, 
and looking where the true value lies in each case with respect to 
that sample value, i.e. on which side of the sample value and how 
often this will happen, the histogram of the possible true values 
that could generate this sample can be drawn (Figure 2). Clearly, 
this is not the distribution of the sample values, it is, at best its mir-
ror image. Skewed distributions calling for asymmetric confidence 
intervals, it becomes clear using the sample distribution directly 
would be very wrong in this case.

It does not mean, however, the solution lies in symmetry. This 
example was simple but also itself quite naive. The models of TOS 
tell us that the variance of the sample distribution is heteroscedas-
tic, meaning it changes with the true value being sampled, i.e. it 
is concentration-dependent. In this example, we had ignored this 
important fact.

It is nevertheless possible to reach the following conclusions:
 ■ The distribution of sample values around a given true value is not 
the same (in dispersion and shape) as the underlying distribution 
of potential true values around a known sample.

 ■ The first one is usually simple and fairly well known (to a good 
enough degree in practical terms), the latter, conversely, is not 
readily known, and its determination would be very complex.

 ■ For confidence intervals characterising the unknown true value, 
unfortunately it is that second, problematic one that really counts.
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The lookup method
The ignorance in which we are of the underlying distribution of the 
possible true values that are able to give raise to a known sample 
value (obtained experimentally), indeed makes the problem of build-
ing a proper confidence interval around the sample value, a rather 
complex one. A method sometimes used is the lookup method, 
based on the likelihood concept. In this method, each possible true 
value (concentration) is considered in turn, and a confidence inter-
val (e.g. 95% confidence as an example) is built around it for the 
sample values, based on what is known of the sample distribu-
tion, including its concentration-dependent variance. By definition 
each interval contains the 95% most likely sample values for a given 
true value. These intervals are plotted on a diagram. The upper and 
lower limits of these intervals define a region in the [True Value, 

Sample Value] space, containing all the sample values belonging to 
their respective 95% confidence intervals around their true values 
(in the example of Figure 3, the sample distributions were assumed 
to be binomial). We will call it the ‘95% Domain’.

Then, when considering a specific sample value, it defines a hori-
zontal line on the diagram. The intersection of the line with the 95% 
Domain is then used as a confidence interval (the red segment on 
Figure 3). It is assumed (intuitive, but not demonstrated) that this 
interval contains approximately the 95% most likely true values able 
to generate that specific sample value.

Testing
The proportion selected by the lookup method was therefore put to 
a test by spreadsheet simulation of sample binomial distributions, 

Figure 1. Hypothetical distribution of sample values around true value T

Figure 2. Resulting distribution of true values around sample value S
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for a full range of true values (concentrations) varying between the 
minimum of 0 and the maximum of 1, using 1,000 binomial trials 
for each. For numbers of success draws lesser than 5, i.e. con-
centrations lesser than 0.005, numerical stability problems altered 
the results to some degree. As kindly pointed out by a reviewer, 
the discrete nature of the binomial distribution is a significant factor 
in this observation. In any case, for these low numbers, the pro-
portion of values within the lookup interval averaged to 95%, but 
with large variations, between 90.4% and 98.8%, with no pattern. 
Above these, the variations around 95% tend to become increas-
ingly smaller, still without pattern, and still averaging to 95%. Given 
the numerical limitations imposed by the spreadsheet precision, the 
method was therefore reasonably validated, in conformity with our 
initial intuition.

Method comparisons
The simulation, however, is too heavy a process for routine applica-
tions, and as mentioned, of imperfect numerical stability. Using it as 

a benchmark, simpler - initially considered naive - methods were 
compared to it, namely:

 ■ Gaussian confidence interval around the experimental sample 
value using the estimated binomial sampling variance.

 ■ Lognormal and binomial confidence interval variants of the 
latter .

 ■ Mirror images of the above two variants (skewed the other way).
As a comparison score, the maximum, relative, unsigned differ-

ence obtained for the two limits of the interval was used, along with 
an eyeball examination.

The following was observed:
 ■ Surprisingly, the mirror images did not perform well, as the 
lookup interval was always slightly skewed to the right, likely a 
consequence of the variance heteroscedasticity we had previ-
ously ignored.

 ■ The binomial intervals fared very erratically, possibly due solely 
to numerical problems. Where they seemed to behave properly, 
their results were however rather poor.

Figure 3. The lookup method basic diagram

Table 1. Comparison of 95% Confidence Intervals on Simulated Sample Distributions

Sample 
Concentration

Lookup Lognormal Normal

LL UL LL UL LL UL

0.005 0.002 0.010 0.002 0.011 0.001 0.009

0.010 0.005 0.017 0.005 0.017 0.004 0.016

0.050 0.038 0.064 0.038 0.065 0.036 0.064

0.100 0.083 0.119 0.083 0.120 0.081 0.119

0.250 0.224 0.277 0.224 0.278 0.223 0.277

0.270 0.243 0.297 0.244 0.299 0.242 0.298

0.350 0.321 0.379 0.321 0.380 0.320 0.380

0.500 0.469 0.530 0.470 0.532 0.469 0.531

0.900 0.880 0.916 0.882 0.919 0.881 0.919
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 ■ The normal and lognormal intervals both performed well at con-
centrations of 0.005 and above. Below these, numerical prob-
lems made the comparison unreliable.

 ■ An approximate concentration threshold of 0.26 on the concen-
tration was found to exist, that differentiated their performances: 
below 0.26 the lognormal intervals worked best, with the normal 
intervals performing better above 0.26.
A selection of these results is offered in Table 1.

Conclusion
In the case of binomial-like sample distributions, the lognormal and 
normal confidence intervals can be used, lognormal below concen-
trations of 0.26, normal ones above. When normal distribution are 

simulated instead, the normal confidence intervals are winning over 
lognormal at all concentrations, which is not surprising, but violates 
the expected distribution shapes at low concentrations. The sim-
ple rule described above and its concentration threshold of 0.26, 
should heuristically give good results in all practical cases.
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