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A short introduction from the “Revue de 
l’Industrie Minerale”
In the 1960s the “Revue de l’Industrie Minerale” took the delicate 
task to publish several special editions in its journal to expose the 
Theory of Sampling suggested by Pierre Gy. They wrote:

“In these documents Pierre Gy suggests an equi-probabilistic 
Theory of Sampling based on samples with a constant number of 
fragments; in other words, considering samples that are all made 
of the same number of fragments. Nevertheless, results from his 
theoretical analysis lead to the justification that formulas that are 
suggested in practice are applicable to samples with constant mass 
or constant volume as well. It should be underlined that similar 
American studies seem to support Pierre Gy’s opinion.”

G. Matheron, through a careful review of Pierre Gy’s work, has 
demonstrated, by means of a rigorous mathematical analysis that 
both samples with a constant number of fragments and samples 
with a constant mass lead to a dispersion of possible grades for the 
lot to be sampled that have similar variances.

The mathematical level of this study may prove to be difficult to 
many readers. However, the importance of the argument is critical 
for the validity of the Theory of Sampling; it is an argument that 
has been approached by many authors over the years leading 
to frustration and failure. As a consequence, Pierre Gy’s theory 
generated passionate controversies.

The “Revue de l’Industrie Minerale” is proud to bring to this 
important discussion the contribution of an authority as famous as 
G. Matheron.”

This document was published 55 years ago and still endures the 
challenges of time. During that long period of time it became clear 
that the fact that such an important document was written in French 
was a huge handicap, especially for reaching the Anglo-Saxon 
audience effectively. We hope the present translation made by 
two recipients of Pierre Gy’s Gold Medal for excellence in teaching 
the Theory of Sampling will help to fill that gap. Complementary 
explanations are also inserted where appropriate, so the reader can 
progress in a more friendly way, and better appreciate the subtle 
foundations of the Theory of Sampling.

Abstract
In his essay “l’echantillonnage des minerais en vrac” that could 
be translated as “sampling of particulate ore” published in 1967 in 
France by the Revue de l’Industrie Minerale, Pierre Gy suggests a 
calculation of the variance associated with samples with a constant 
number of fragments. In practice, samples with a constant mass 
are instead collected, which may seem at first like a contradiction. 
In this mathematical development it is clearly demonstrated that 
these two kinds of samples lead to variances that are similar within 
well-established mathematical limits.

[Translators’ Note (T.N.): To make the translation easier to read, 
the structure and the logical articulation of Matheron’s long and 
tedious paper need to be understood first:
1. The introduction first establishes the difference between “sam-

pling in number” and “sampling in mass”, to ready the math-
ematical background.

2. Sampling in Number is then studied.
 ■ This first calls for specific developments aimed at calculating 
first order approximations to E(1 / Y), E(1 / Y k) and, for Gy’s for-
mula, E(Xk / Y k) for a random variable Y. There are no ready-
made formulas in statistics, and no exact formulas for this task. 

 ■ A rather tedious demonstration using the Laplace transform 
indeed shows that in the case of E(1 / Y), for any random vari-
able Y that can be interpreted as the mean of “n” independent, 
identically distributed (i.d.d.) random variables, even a diver-
gent serial development can be actually used as a limited de-
velopment near the value of “n” considered. The result is then 
generalized to E(1 / Y k).

 ■ Having set up these mathematical tools, then Gy’s formula is 
established for sampling in number and the result is formally 
identical to Gy’s findings, thus validating it.

3. Sampling in Mass is then tackled:
 ■ The necessary approximations are again established for E(N) 
and E(N2), N being the number of fragments (now a random 
variable) in the sample of a given mass p.

 ■ Then approximations are also needed for E(X;p) and E(X2;p), 
i.e. the mathematical expectations of the sample metal 

doi: 10.1255/tosf.80

mailto:dfbgn2%40gmail.com?subject=
mailto:fpsc%40aol.com?subject=


Issue 5  2015232 TOS f o r u m

w c s b 7  p r o c e e d i n g s

www.impublications.com/wcsb7

quantity  X at a given mass p, and of its square. This time, the 
Fourier transform helps establish, like before, usable limited 
developments.

 ■ The same formula as for sampling in number is finally reached 
in the case of a given mass, and the paper concludes that 
Gy’s formula is formally and fully validated for both types of 
sampling.]

1. Matheron’s introduction
In his fundamental document published in 1967 dedicated to 
“l’echantillonnage des minerais en vrac” (i.e. the sampling of bulk 
ores) Pierre Gy demonstrated that the variance associated with a 
sample made of a given number of fragments n (i.e., sample made 
of a preset number n of elementary fragments) follows an asymptotic 
tendency when the number n is large and when the sampling mode 
that is used is equi-probabilistic (i.e., correct, which means all 
possible samples with n fragments have the same probability of 
being selected by the sampling tool). The theoretical path followed 
by Pierre Gy has been the object of severe criticism over the years 
that can be summarized by the two following arguments:
1. As far as the calculation of the variance is concerned, the validity 

of some of Gy’s developments has been contested.
2. Furthermore, in daily practice, the collection of samples with a 

constant number of fragments n predetermined in advance is 
never done that way, but rather samples with a predetermined 
mass or volume are indeed collected; the number of fragments 
in these real samples is then necessarily unknown. Then, con-
sequently, it is apparently justified to doubt that conclusions 
reached for samples with a constant number of fragments are 
also valid for samples with a constant mass or a constant vol-
ume.
The objective of this study is to carefully investigate these 

objections and demonstrate the full legitimacy of Pierre Gy’s results 
[T.N.: in other words it is a corner stone to confirm the legitimacy 
of the Theory of Sampling]. From a mathematical standpoint it is 
relatively easy to demonstrate the legitimacy of a theory based 
on samples with a constant number of fragments. However, to 
legitimately transfer these results to a theory based on samples of 
constant mass or constant volume requires the use of far more 
difficult mathematical tools. In a way this explains why Pierre Gy in 
his search for a pragmatic tool chose to use the simplest approach. 
For the sake of simplicity and to avoid unnecessary mathematical 
developments the assumption is made that the original number of 
fragments in the lot to be sampled is practically infinite, which is 
most of the time almost exactly the case. To get straight to the point 
the two following hypotheses are made:

The mass w— of one ore fragment and its metal content q can be 
considered as two random variables that are not independent. 
Furthermore, to simplify notations, the assumption is made that their 
distribution function F(q · w—) carries a probability density function f(q,w—).
1. The sample collection mode is such that the selected sample can 

be considered as the reunion of fragments following the same 
probability law f(q,w—) (i.e., collected one by one at random and 
making sure they are independent from one another). In other 
words:
a. For a sample with a given number of fragments n, its mass and 

its metal content  can be written as follows:
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It is understood that each qi is independent of qj and w—j for j ¹ i 
(but it is also understood that qi and w—i are not independent), and 
each pair (qi,w

—
i) follows the same probability law f(q,w—).

b. If, on the contrary, we consider a sample of a given mass p 
defined by the following condition:
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its number of fragments N appears to be a random variable. 
The mass Yn and the quantity of metal Xn of this sample are 
then defined as sums of a random number N of variables w—i 
or qi.

In a first part we will calculate the mathematical expectation and 
the variance of the metal concentration Xn / Yn of the sample carrying 
a number of fragments n when n is a large number. In the second 
part the same calculations are repeated for the metal concentration 
XN / p of a sample of a given mass p, when p is a large number. It 
is intended to demonstrate that their variances for both cases are 
asymptotically equivalent when p is large. 

2. Case of a sample with a constant number of 
fragments
Assuming the number of fragments in the sample is n let us 
introduce:

 
1

1 1 n

n i
i

X X q
n n =

= = å  [4]

 
1

1 1 n

n i
i

Y Y
n n

w
=

= = å  [5]

When n is large, variances of X and Y are in 1 / n, and the 
centered moments of superior orders are at least in 1 / n2. The 
metal concentration X / Y of the sample appears then like the ratio 
of two random variables having very small variances. To calculate its 
mathematical expectation and its variance, it is convenient to write:

 Y = my + e   with   my = E(Y ) [6]

and then getting started from the following formal development in 
series:
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which can be used if | e / my | < 1.
If there is a probability of “one” that the inequality | e / my | < 1 be 

verified, it is possible then to take the mathematical expectation one 
term at a time, and then deduce from a complete serial development 
what the expression of the average and the variance of X / Y should 
be. Of course, if the inequality | e / my | < 1 is not verified with a 
probability of “one”, this mode of calculation would no longer be 
valid, plus the serial developments that could be obtained would 
generally diverge anyway. Nevertheless, as a limited development 
(as opposed to a formal serial development) the results obtained by 
this process would conserve their validity.



Issue 5  2015 233TOS f o r u m

w c s b 7  p r o c e e d i n g s

www.impublications.com/wcsb7

2.1 Mathematical expectation E(1 / Y)

To prove it without useless mathematical developments, let’s 
focus only on the mathematical expectation E(1 / Y ) of a variable Y 
characterized by a density f(y). In this case indeed:

 ( )1 1
E f y dy

Y y

+¥

-¥

æ ö÷ç =÷ç ÷÷çè ø ò  [8]

If f(0) ¹ 0, this integral is divergent and therefore 1 / Y cannot have 
a mathematical expectation: for example, if Y is a normal variable, 
its inverse can never have a mathematical expectation. Therefore it 
is critically important not to assume that the law of f(y) is close to 
a Gaussian law. In fact, Y representing a mass, f(y) is different of 
0 only for y ³ 0, and the integral [8] will exist provided the density 
f(y) is of a very small order e > 0 for y = 0. It is easy to demonstrate 
that this condition is always satisfied in the case where Y is the 
sum of at least two independent variables that themselves follow 
continuous laws. In the problem that is investigated in this study 
E(1 / Y ) therefore always exists (T.N.: because of equation [5] ).

To evaluate E(1 / Y ) it is convenient to introduce the Laplace 
transform of the law f(y):
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As a matter of fact F(l) always exists for l ³ 0 and the following 
integral as well:
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If µ tends toward the infinite in relation [10] it can be noticed that 
the mathematical expectation of 1 / Y exists at the same time as the 
integral
 ( )
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(T.N.: i.e. the integral of the Laplace transform on [0,∞].)
Let’s call m the mean, s2 the variance and mn the centered 

moment of order n of the variable Y (that we will assume to exist); 
let’s also call Fc(l) the Laplace transform of the law of the centered 
variable Y – m:
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Then also:

 ( )
0

1 m
cE e d

Y
l F l l

¥
-æ ö÷ç =÷ç ÷÷çè ø ò  [13]

Now, in some cases Fc(l) can be developed into a formal series 
of the following form:
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Taking this expression into [13] and if it is integrated term by 
term, the following expression is obtained (T.N.: after quite some 
calculus):
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In other words, it is exactly the result that should be expected 
from the development [7] [T.N.: with X = 1 and Y – m = e]. 

However:
 ■ It is possible that the series [14] may not be convergent; this is 
the case when Y is, for instance, a lognormal variable. 

 ■ It is also possible that even if the series [14] is convergent, it may 
not be uniformly convergent, making the term by term integration 
invalid; it is what happens, for instance, when f is a gamma law: 
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For a > 1, E(1 / Y ) exists and [14] converges. However, the 
convergence is not uniform and it is easily shown that the formal 
mathematical development written in [15] is diverging (mk / m

k tends 
toward an infinite value with k).

Therefore, in general, it is not possible to use the full development 
written in [15] as a formal series.

However, as we are going to see, it is always possible to use it 
as a limited development within the domain of variations that is of 
interest to us, provided we can show the rest of the development 
behaves as a negligible remainder in that domain.

As a matter of fact let’s write:
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The remainder Rk(l) of this development is:
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By taking [17] into [13] the following expression is obtained:
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The remainder R'k of this development is:
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To find an upper bound for this remainder let’s take a number a > 1 
(that we will soon define) and let’s write:
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For x ³ (m / a) we have:
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so that an upper bound for the second integral is:
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But, if Y can be written like
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the centered absolute moment
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tends toward 0 when n tends towards infinity (generally it is an infini-
tesimally small value of order h + 1 < k + 1 in 1 / n).

What is left to do is finding an upper bound for the first integral of 
remainder R'k.

If the density of Yi has a number B as upper bound, the density 
of Y verifies:
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[T.N.: this upper bound can be difficult to establish. First, one must 
show the density function of the sum of the n variables Xi has
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as upper bound. This is obtained by recurrence, remembering 
the density function g(t) of the sum of two independent random 
variables with positive values is the convolution product of their 
densities (summed between 0 and t). The upper bound for the 
average of the Xi is then only derived, remembering the density 
function h(t) of variable “X / n” can be derived from the density f(t) of 
X as h(t) = n f(nt).]

Then, the following expression is obtained:
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If n is sufficiently large the Stirling formula can be used to replace 
factorials in [25] by a term such as
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that tends exponentially toward 0 when n ® ¥ as long as the 
selected value for a is superior to Bme (e.g., a = 3Bm).

Therefore, finally, the last part R'k is an infinitesimally small number 
in 1 / n in the order of
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(an order generally smaller than k + 1). It is not important if R'k tends 
toward 0 or not for k ® ¥. If, for any given value of k, it is possible to 
verify that R'k is in the order of h + 1 in 1 / n, it is then possible in the 
approximation of order h (generally < k) to utilize the development 
[19] and stop at the term in mk.

2.2 Mathematical expectation E(1 / Yk)
Similarly it is possible to demonstrate that the mathematical 
expectation E(1 / Yk) exists at the same time as the integral
 
 

( )
( )

1

0 1 !

k

d
k
l

F l l
-¥

-ò

and then:

 
( )

( )
1

0

1
1 !

k

k
E d

Y k
l

F l l
-¥é ù

ê ú =
ê ú -ë û

ò  [26]

It is then sufficient to replace F(l) with e–lmFc(l) to obtain, as 
above [see (13)], the formal development of E(1 / Y k) which is most 

of the time divergent; however, it is possible to use it as a limited 
development. For example, for k = 2, it becomes:

 
2

3
2 2 2 3

1 1 3
1 4 ...E

Y m m m
msæ öæ ö ÷ç÷ç ÷= + - +÷ çç ÷÷ ç÷ç ÷çè ø è ø

 [27]

from which (by subtracting the square of E(1 / Y ) in (19), it is possible 
to obtain the principal part of the variance of 1 / Y:
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2.3 Establishing Gy’s formula

If X and Y are two random variables of law f(x,y) we can start by 
introducing the Laplace transform:
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And, as above, the following relation is obtained:
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[T.N.: To see it, one first calculates:
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So that the right-hand side of [30] is:
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Noting that:
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One can see that:
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Then, calling Fc the transform of the centered variables law:
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Suffice substituting F for x ym m
ce l m- - F  in equation [30], as before, 

to obtain some formal developments, generally divergent, that can 
be used as limited developments. So that, from:
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one obtains without difficulty the first terms of the developments of 
E(X / Y ) and E(X2 / Y2):
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as well as the principal part of the variance of X / Y:
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which can also be written:
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Coming back to the original notations shown in [1] and [2], it is 
easy to see that the metal content X / Y = Xn / Yn of the sample with n 
fragments has a mathematical expectation and a variance that can 
be written as follows [when ignoring the terms in 1 / n2 and letting 
x0 = E(q) and y0 = E(w—)]
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These are indeed the formulas obtained by Pierre Gy and in 
particular formulas obtained in Chapter IV of his January 15, 1967 
publication. The validity of these formulas is therefore no longer 
questionable. It can be seen that the mathematical expectation 
E(X / Y) of the metal content of the sample made of n fragments (for 
all the possible choices of the sample in the lot) does not exactly 
coincide with the real mean of the lot, which is x0 / y0, but the 
difference is extremely small and in 1 / n. Therefore there is indeed 
always a small bias. The variance is, as expected, as the inverse of 
size n.

3. Case of a sample with constant mass
In daily practice it is clear that collected samples have either a 
constant mass, or volume, pre-selected in advance, rather than a 
constant number n of fragments. Then it is not obvious that the 
sampling variances for these two sampling modes are the same. 
Because the variable
 

1

1 n

in
w

=
å

almost surely converges toward E(w—) when n tends toward an 
infinite value, one would certainly suspect they are, but it would be 
wiser to demonstrate this property more rigorously.

Let’s assume that in the collected sample, everything is like 
randomly collecting successive fragments with average masses w—i 
and metal contents qi, and that each one of these two quantities 
obeys the same probability law for all the fragments. Then, when 
n fragments have been collected, a sample is obtained with the 
following characteristics:

 
1

n

n i
i

X q
=

=å  [40]

 
1

n

n i
i

Y w
=

=å  [41]

When n changes the vector (Xn,Yn) is a stochastic process (i.e., a 
vectorial process with two components Xn and Yn defined within the 
discrete set of positive integers n. Because of the independence of 

the successive fragment selections, it constitutes a Markov process 
with independent and stationary increments.).

Each of the two components Xn and Yn can be represented by a 
random steps process as illustrated in Figure 1. The sample with 
a number of fragments k pre-selected in advance, and studied in 
the former section, is defined by (Xk,Yk), which is the value of the 
process (Xn,Yn) for the particular value n = k.

The sample of mass p selected in advance can be defined in two 
different ways, either by default or by excess. As a matter of fact if 
N is the random time (the value of n) for which we have:

 1,N NY p Y p+< ³  [42]

then it can be said that N is the random number of fragments of the 
sample of pre-selected mass p. Indeed, the two inequalities [42] 
mean that the N first fragments consist of a sample of mass smaller 
than p, and that the total mass of the N + 1 first fragments reaches 
or surpasses p. The sample itself can be defined either by default 
with characteristics Xn and Yn or by excess with characteristics Xn + 1 
and Yn + 1. These two definitions can be considered as equivalent; 
indeed both samples usually made of many fragments are different 
only by one fragment which is the fragment selected at a (N + 1)th 
time.

In the following developments we opted for the definition 
by excess (XN + 1,YN + 1). In the first step, the law of the random 
number of fragments N of the sample of pre-selected mass p is 
investigated, then in a second step, the law of the metal content of 
the same sample is investigated, or, in other words the law of XN + 1. 
The given mass p of the sample being assumed large, relative to 
the average mass y0 = E(w—) of the individual fragments, we will be 
mainly searching for the asymptotic expressions of the mean and 
the variance of these different variables.

3.1 Law of the number of fragments N in the sample of 
pre-selected mass p
Let’s call Pn(p) the probability of having N = n, or, in other words, a 
number n of fragments in the sample. The event “N = n” coincides 
by definition with the event “Yn < P and Yn + 1 ³ p”.

Let’s define fn( y) as the density of probability, and Fn( y) the 
cumulative distribution function of the Yn distribution. Therefore, the 
probability of the event “Yn < P” is Fn( p) and the probability of the 

 11
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Figure 1. Illustration of the Markov process.
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event “Yn + 1 < p” is Fn + 1( p). Since the event “Yn < p” is the logical 
sum of events “N = n” and “Yn + 1 < p” that are incompatible (i.e. we 
have “N = n” OR ELSE “Yn + 1 < p”), we obtain:

 ( ) ( ) ( )1n n nF p P p F p+= +  [43]

from which the following expressions can be deduced:

 ( ) ( ) ( )1n n nP p F p F p+= -  [44]

 ( ) ( )0 11P p F p= -  [45]

It is then convenient to introduce the generating function G(s;p) 
of the Pn(p) probabilities, which, according to [44] and [45] lead to:

 ( ) ( ) ( ) ( )1

0 1

; 1 1n n
n n

n n

G s p s P p s s F p
¥ ¥

-

= =

º = + -å å  [46]

As is well known, suffices deriving the generating function and 
taking s = 1 to obtain the successive moments of the discrete law 
of Pn(p). The two first interesting moments are:

 ( ) ( )' 1E N G=  [47]

 ( ) ( )1 " 1E N N Gé ù- =ê úë û  [48]

Taking into account the expression of the generating function [46] 
we obtain:

 ( ) ( )
1

n
n

E N F p
¥

=

=å  [49]

 ( ) ( ) ( )
1

1 2 1 n
n

E N N n F p
¥

=

é ù- = -ê úë û å  [50]

We therefore need to evaluate both sums SFn(p) and SnFn(p) 
when p is large. This is made possible introducing the Fourier 
transform and by using the following rule:

If h(x) is a function, and if H(u) is its Fourier transform 
(generally taken in its distributional expression), it is known 
that the continuity properties of H(u) give an image of the 
regularity of h(x) toward the infinite. In particular, if the 
distribution of H(u) is identified with a continuous function 
growing slowly, h(x) tends toward zero when x tends 
toward the infinite.

Then, let h(x) be a function worth zero for x < 0, and H(u) its 
Fourier transform, which generally is a distribution. If the distribution
 
 ( )

( ) ( )
0 1 2

2 3

a a a
H u

iu iu iu
+ - +

is identified with a continuous function growing slowly, then:

 ( ) 22
0lim 0 when

2i

a
h x a a x x x
é ù
ê ú- - - = ® +¥
ê úë û

 [51]

In other words h(x) is then asymptotically equal to the polynomial 
function
 22

0 1 2
a

a a x x+ +
.

In what follows let’s make l = –iu which is formally equivalent to 
using the Laplace transform. We should ignore some mathematical 
difficulties that are of no consequences in the following study, 
especially the summation of geometric series of the type S[F(u)]n, 
where F(u) is a characteristic function: in fact it is necessary to assume 
the inequality |F(u)| < 1 is strict as soon as u is not nil. This condition 
is indeed verified for all usual laws, with the exception of discrete 
laws such as the Poisson law, for which the random variable cannot 
admit other values than integer multiples of a same quantity: these 
laws have characteristic functions that are periodic and the equality 
F(u = 1) is indeed possible for u ¹ 0.

To find the asymptotic expression: 

 ( ) 22
0 1 2

a
h x a a x x» + +  [52]

of a function h(x) (identically nil for x < 0), suffice taking its Laplace 
transform F(l), and then determining constants a0, a1 and a2 in 
such a way that
 ( ) 0 1 2

2 3

a a a
l

l l l
F - - -

is a continuous function in l = 0.

Calculation of E(N) and E(N2)
Then, let F1(y) be the function representing Y1 (i.e. the mass of a 
fragment) and F(m) its Laplace transform:

 ( ) ( )1
0

ye dF ymF m
¥

-= ò  [53]

The variable Yn which is the sum of n independent variables from 
the distribution law Fi, follows a law for which the Laplace transform 
is [F(m)]n. The transform of Fn(p) is then (1 / m)[F(m)]n, and the sum

 ( )
0

n
n

F p
¥

=
å
has the following transform:

 ( )
( )0
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1

n

n

F m
m m F m

¥

=

é ù =ê úë û é ù-ê úë û
å  [54]

[T.N.: by summation of the series].
Let y0 = E(Y1) and sy

2 be the mean and the variance of the fragment 
mass.

[T.N.: Replacing e–µy in [53] by its development in series 
e–µy = 1 + (–µy) / 1! + (–µy)2 / 2! = … and integrating] we obtain the 
limited development:

 ( ) ( )2 2 2
0 0

1
1 ...

2 yy yF m m m s= - + + +  [55]

from which we derive:
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Applying the rule described above, the following asymptotic 
expression is deduced:

 ( )
2

2
0 0 0

1
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p
F p
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s¥

=

æ ö÷ç ÷ç» + + ÷ç ÷ç ÷è ø
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Go back to [49] and [50] remembering that F0(p) = 1. The 
mathematical expectation E(N;p) of the number of fragments in the 
sample of mass p, then admits the following asymptotic expression:
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 ( )
2

2
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2
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sæ ö÷ç ÷ç= + - ÷ç ÷ç ÷è ø
 [58]

Its principal part coincides, as expected, with the ratio of the 
selected sample mass p to the average mass y0 of individual 
fragments. (T.N.: but it is not equal to it exactly, and there is a first, 
small bias. To understand why this surprising bias exists, one needs 
to go back to the definition of the sample of mass p, i.e. to formula 
[42].)

Now, let’s go to the sum SnFn(p) for which the Laplace transform 
relative to p is:
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F m

F m
m m F m

¥
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é ù = ×ê úë û é ù-ê úë û
å  [59]

Taking the limited development, now pushed to the third order, 
and calling a3 the moment of order 3 of the law F (i.e. F1), we obtain:

 ( ) 2 2 2 3
0 0 3

1 1
1 ...

2 ! 3 !yy y aF m m m s mé ù= - + + - +ê úë û  [60]

From which we easily obtain:
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  [61]

By applying the rule used earlier we obtain the following 
asymptotic expression:
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In fact (for p large) we only need the terms in p and p2 and we can 
ignore the constant term. Transposing this result into [49] and [50], 
and taking into account expression [58] for E(N ), we obtain:

 ( )
22

2
2 2
0 0 0

2 1yp p
E N

y y y

sæ ö÷ç ÷ç= + × - ÷ç ÷ç ÷è ø
 [63]

Then by elevating [58] to a square and subtracting it from the 
above expression [63], we finally find the asymptotic expression of 
the variance of the number of fragments in the sample of mass p:

 ( )
2

2
2

0 0

; yp
D N p

y y

s
= ×  [64]

This expression is proportional to p / y0 therefore proportional to 
E(N;p) at the first order.

3.2 Law for the metal content XN + 1 of the sample with a 
given mass
Now, let’s call f(x,y) the density of probability of the (Xn,Yn) 
characteristics of a single fragment, and let F(l,m) be its Laplace 
transform:

 ( ) ( )
0 0

, ,x ye f x y dxdyl mF l m
¥ ¥

- -= ò ò  [65]

We must determine the density g(x;p) of the metal content XN + 1 
of the sample (by excess) of a given mass p and random number 
of fragments N.

[T.N.: ( ) ( )
0

, ,g x p f x y dy
¥

= ò ]

To express this law, and in particular to find the asymptotic 
expressions of the mean and variance of XN + 1 we shall use the 
Laplace transform G(l,m) of the function g(x;p), relative to the two 
variables x and p:

 ( ) ( )
0 0

, ; x pg x p e dxdpl mG l m
¥ ¥

- -= ò ò  [66]

We will take advantage of the fact that the process (Xn,Yn) is made 
of stationary and independent increments, and more precisely that 
for all n > 1, the vector (Xn – X1,Yn – Y1) is independent of (X1,Y1) and 
follows the same probability law that of (Xn – 1,Yn – 1). The sample of a 
given mass p has a number of fragments N = 0 if the first fragment 
has a mass Y1 ³ p. On the contrary if the first fragment has a mass 
Y1 = h < p and a metal content X1 = e the conditional probability law 
of the sample of given mass p (tied by conditions X1 = e and Y1 = h) 
has a density g(x – e;p – h). We then deduce the integral equation:

( ) ( ) ( ) ( )
0 0

, , ; ,
x p

p
g x p f x y dy d g x p f de e h e h h

¥
= + - -ò ò ò  [67]

If we apply the Laplace Transform (in x and p), to both members 
of equation [67], the convolution products they contain are replaced 
by ordinary multiplicative products and we obtain:

 ( ) ( ) ( ) ( ) ( )1
, ,0 , , ,G l m F l F l m G l m F l m

m
é ù= - +ê úë û  [68]

From [68] we immediately deduce the expression of the Laplace 
transform G(l,m) of the density g(x;p):

 ( )
( ) ( )

( )
,0 ,1

,
1 ,

F l F l m
G l m

m F l m

-
= ×

-
 [69]

By deriving this transform in l and by making l = 0 we obtain 
the Laplace transforms for the mathematical expectation E(X;p) 
and the variance E(X2;p), which are functions of the only variable 
p. To write this in a concise way we will call the metal content of 
the sample by excess X, instead of calling it XN + 1. By using the 
Laplace transforms, the rule already used earlier will then allow us 
to calculate the asymptotic expressions representing these two 
mathematical expectations, and, as a result, the variance of the 
sample with a given mass p.

Calculation of E(X;p)
By deriving [69] once in l and by making l = 0 we obtain the 
transform of E(X;p) under the following form:
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where designates the mathematical expectation E(X1) of the metal 
content of a given fragment. In the same way sx

2 will designate the 
variance of X1.

Since (1 / m)[F(0,m)]n is the transform of Fn(p) according to [49] and 
[50] we obtain:

 ( ) ( )0; 1 ;E X p x E N pé ù= +ê úë û  [71]

Then, the by-excess sample, with a number of fragments N + 1 
instead of N, contains, on average, a metal content proportional to 
its size. As far as the mathematical expectations are concerned, the 
condition that we imposed to the sample by fixing its mass p does 
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not generate any effect: everything remains as if it was the collection 
of a given number of fragments n = 1 + E(N;p).

Taking into account [58] we also obtain:

 ( )
2

0
0 2

0 0
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; 1

2
yx

E X p p x
y y

sæ ö÷ç ÷ç= + + ÷ç ÷ç ÷è ø
 [72]

The mathematical expectation (1 / p)E(X;p) of the metal 
concentration X / p of the sample of given mass p is different than 
the real concentration x0 / y0 by a quantity that is always positive, but 
very small (in x0 / p).

This tiny, positive bias is easily explained if we recall that we are 
dealing with a sample by excess with a real mass YN + 1 that is always 
slightly superior to p (see [42]).

Calculation of E(X2;p)
We obtain the Laplace transform of the order 2 moment by deriving 
G(l,m) twice in l before making l = 0, which according to [69] 
gives:
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The first term is different from the one that we used to calculate 
E(X;p) only by a constant factor. Then, it corresponds to a term with 
a principal part in p in expression E(X2;p), which is (x0

2 + sx
2)(p / y0).

Developing the second term, we easily obtain:
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The corresponding asymptotic expression is then (limiting 
ourselves to the first two main terms in p and p2):
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By grouping these two results together we finally obtain:
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Calculating the variance of the sample of given mass p
It is only necessary to square equation [72] to make this calculation, 
of course limiting the calculation to the terms p and p2, and then 
subtracting it from equation [75] which leads to the principal part 
of the variance:
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The expression between brackets can be replaced by:
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since Y1 = w— is the average mass of one elementary fragment 
and X1 = q is the metal content of that fragment. Therefore the 
concentration X / p of the sample of a given mass p has a variance 
equal to:

 ( )
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y x q
D X p E

p p y x y
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 [78]

Finally, in a first order in 1 / p according to [58] we can replace 
y0 / p by 1 / E(N;p) and obtain:

 ( )
( )
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1 1
;

;
x q

D X p E
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Now, let’s go back to equation [39]. We find that the sample of 
a given mass p has the same variance as the sample with a given 
number of fragments n, on the condition, of course, that we select 
for n the mathematical expectation E(N;p) of the random number 
of fragments in the sample of a given mass p. This result is valid if 
p or E(N) are large enough in order to ignore the terms in 1 / p2 or 
1 / [E(N)]2.

4. Conclusion
We finally reach the point where the full justification of the calculation 
mode selected by Pierre Gy has been achieved once and for all. As 
far as we are concerned, we are satisfied to have, through this study, 
so arid for many, brought our own contribution to this fundamental 
piece of work, so critically important for the foundation of the Theory 
of Sampling. Also, and but not the least, this work has allowed us 
to refute without appeal the many criticisms unfairly made over the 
years to Pierre Gy’s work.
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