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sample preparation and analysis
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Materials Sampling & Consulting, Southport, Queensland, Australia 4215. E-mail: glyman@iprimus.com.au

Following from the author’s recent paper at Sampling 2014 which presented a method for calculation of the sampling probability 
density function due to the particulate heterogeneity (density function of the fundamental sampling uncertainty), it is possible to apply 
the same characteristic function method to arrive at the overall sampling distribution for any sampling protocol and analysis method. 
This paper develops the application of the method of characteristic functions to the overall sampling problem including the uncertainty 
which derives from the primary sampling from a process stream. The assay distribution in a process stream or of impurities in the 
flow of a final product can be governed by non-Gaussian, serially correlated distributions. The paper shows how such circumstances 
can be dealt with to arrive at robust solutions. The paper represents an end-point in the theory of sampling as it provides a means of 
determining the entire distribution function for a sampling system. Such a determination has not previously been possible and having 
determined the entire distribution function, the statistics of the sampling process are completely determined.

Introduction

O
ne cannot say too much about the theory of sampling 
put forward by Pierre Gy. Gy consolidated the elements 
of sampling theory that had been proposed over the 
years leading up to his definitive works in the 50s and 

60s. For the English-speaking world, the theory of sampling arrived 
in 1979 with his book published by Elsevier.

This was close to the time when I first began to take an interest in 
sampling theory so that I could design plant tests intended to reveal 
the performance of unit operations in coal processing, with which 
I was then involved. There was always in mind that party A claims 
an increase in yield of X percent while party B claims an increase 
of Y percent. Who was correct? How were the trials carried out? 
Is it possible to assess the uncertainty involved in the claims of 
improved performance? If everyone who carried out trials was cor-
rect, the yield of product would be 120% of the feed content.

The resolution of this conundrum is found in the provision of esti-
mates of uncertainty to be attached to each of the quantities meas-
ured in the test work and to have those uncertainties propagated 
through to the final figure for recovery, yield or whatever perfor-
mance indicator is preferred. Unlike the physicists who were work-
ing at the time when I was an undergraduate and graduate engineer 
learning my trade, I found that the mineral processors never pro-
vided error bars on their results in the same way that the physicists 
and chemists did. I found this to be an unscientific approach and 
to be rather political in nature. An engineering or physical quantity 
has no validity until there is a reasonably accurate estimate of its 
uncertainty that is stated along with the figure.

Pierre Gy waged a campaign to bring the mineral processors into 
the world of modern science by focussing on the uncertainties that 
we experience when doing test work or running a plant. While a 
number of investigators had made estimates of sampling variance 
due to the particulate nature of a mineral mixture, Gy created a 
mathematical structure that could be used in a coherent fashion 
to describe the variance of sampling due not just to the particulate 
nature of the mineral but also to the process variance in the flow 
in the plant that was being sampled. His recognition that he could 
borrow from the nascent theory of geostatistics to describe the vari-
ance due to grade variation in a process stream was a unique and 

brilliant step forward. This very important component of sampling 
variance had been ignored up to that point in time.

The mineral processing world is still struggling to come to terms 
with the power of Gy’s work. The full power of his theory is often 
neglected in the design of sampling systems. We have new analyti-
cal tools to look at fine particle compositions that permit the imple-
mentation of the detail of Gy’s work; we don’t have to guess at a 
liberation constant any more or postulate how that value may vary 
with the top size of the sample.

I have recently been lucky enough to come across some work by 
a skilled statistician that lead me to develop a means of estimating 
the entire sampling distribution, due to all factors. This paper pre-
sents the outline of how these calculations are made.

I respectfully dedicate this presentation to Pierre whose work has 
been a constant inspiration since I learned of it and met him many 
years ago in Sydney.

The paper will briefly recall the mathematical method by which the 
calculations can be made and will then provide an example of the 
outcome of the calculations, for a gold ore.

Mathematical background
The method of calculation of the entire sampling distribution is based 
on the fact that given a set of random variables that are statistically 
independent and each have arbitrary probability density functions, the 
characteristic function for the probability density of a weighted sum 
of the random variables is determined from the product of the char-
acteristic functions for each of the random variables. This is a funda-
mental relationship of mathematical statistics. In fact, the probability 
density function and the characteristic function are Fourier transform 
pairs. Knowledge of the characteristic function for a random variable 
is equivalent to knowledge of the probability density function.

For every probability density function, p(x), the characteristic 
function is defined as
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where, I = –1 so it is a complex-valued function and is a Fourier transform of the density function. Given the characteristic function of 

a density function, the density function can be recovered as an inverse transform yielding a real-valued function 
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where, i = Ö–1 so it is a complex-valued function and is a Fourier 
transform of the density function. Given the characteristic function 
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The characteristic function has the following properties 

 
( )
( )

( ) ( )

0 1

1u

u u

=

£

- =

j

j

j j

 (3) 

where ( )uj <Eq A> is the complex conjugate of j(u). 

It is also possible to calculate the non-central moments of the density function directly from the characteristic function without 
making the inversion, as 
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This last relationship is very useful as one can find the sampling variance without having to make an inversion. 
In sampling a process stream for a particular critical content, when the sampling is carried out in a mechanically correct manner, 

there are only three sources of variance: 
• variance due to the time variation of the critical content of the process stream 
• variance due to the intrinsic (particulate) heterogeneity of the primary increments and the subsamples retained in the sample 

preparation protocol, including that of the analytical aliquot 
• variance due to the final analysis of the aliquot by some appropriate means  

It is usual to base the calculation of the variance due to intrinsic heterogeneity on an average composition of the material being 
sampled, although this is not mandatory. It is then implicit that the variance due to intrinsic heterogeneity depends only on the partic-
ular state of comminution of the material being sampled. Indeed, the distribution of the uncertainty due to intrinsic heterogeneity is 
taken to be dependent only on the average grade and the state of comminution of the material. 

In such a case, it is possible to state that the three sources of uncertainty are statistically independent. Consequently, if it is possible 
to determine the probability density functions for each of the three sources of uncertainty, it will be possible to calculate the probability 
density function for the sampling protocol as a whole by finding the characteristic functions for each of the sources of uncertainty, 
taking their product and inverting this product. Even if the probability density function varies with the state of comminution of the 
subsample within the sampling protocol, that change can be accommodated within the procedure by introducing additional inde-
pendent density functions into the calculation. 

The first source of variance, due to time variation of grade in the stream is something about which we know very little in practical 
terms as it is very rare to undertake sampling campaigns in which frequent increments are taken with preparation and analysis of 
individual increments. Such information as we have usually comes from on-line analysis systems. For the purpose of this analysis, the 
grade variation in the process stream under examination will be simulated on a very fine time scale (all potential increments will be 
created) and the stream will be sampled at an appropriate frequency over an 8 hour shift. 

We know more about the second source of variance if an appropriate investigation of the ore is undertaken to determine the size 
distribution of the gold grains. This information is absolutely fundamental to the sampling of the material and development of sampling 
protocols. The required information can be developed in conjunction with gravity recoverable gold studies. 

The final source of uncertainty, the analytical uncertainty can be determined from laboratory duplicate assay information. It is im-
portant that such information be uncensored (all assays made must be captured by the laboratory information management system). 
This distribution should be Gaussian if the protocol and method is correct. 

Example 
The calculations will be illustrated by considering a variable feed to a gold plant that is treating ore from two different sources, one of 
which has a higher grade than the other and a different size distribution of gold in the ore. We take the following case: 

• Ore A is treated 25% of the time and is the higher grade material 
• The switching of the feed between the two sources is random in that the duration for which each ore is treated follows an 

exponential distribution with an expected duration of 10 minutes (high grade) and 30 minutes (low grade). 
• Both ores carry gold with a two distribution of grain sizes to explore the impact of 'coarse gold'. 

Feed variation and primary sampling density function 
A typical trace of the feed gold grade is shown in Figure 1. Both the low grade and the high grade material are taken to follow gamma 
distributions of grade. The low grade material has an average of 2 g/t and the high grade material, 10 g/t. Both distributions have an 
order of two. Their density functions are shown in Figure 2. 

The time variations of the grade for both ore types are taken to follow random functions with an exponential covariance functions 
with a range of about 70 minutes and are used in such a way that the variation in an ore type remains correlated even when inter-
rupted by feeding of the other ore type. This simulates feeding alternately from one of the two ore sources. 

The simulated trace of grade as a function of time is sampled at a 15 minute period (32 increments per shift) and the grade of the 
accumulated sample is compared to the true grade for the time period. The sampling is of course unbiased. The quantity of interest is 
the distribution of the difference between the true unknown grade and the grade of the sample as that is the sampling uncertainty. It is 
essentially impossible to calculate this distribution a priori, so the simulation method must suffice. 

The simulations were run 5000 times, simulating 5000, 8 hour periods on a time base of 1 second (28800 points in the simulation) 
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This last relationship is very useful as one can find the sampling 
variance without having to make an inversion.

In sampling a process stream for a particular critical content, 
when the sampling is carried out in a mechanically correct manner, 
there are only three sources of variance:
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primary increments and the subsamples retained in the sample 
preparation protocol, including that of the analytical aliquot

 ■ variance due to the final analysis of the aliquot by some appropri-
ate means
It is usual to base the calculation of the variance due to intrin-

sic heterogeneity on an average composition of the material being 
sampled, although this is not mandatory. It is then implicit that the 
variance due to intrinsic heterogeneity depends only on the particu-
lar state of comminution of the material being sampled. Indeed, the 
distribution of the uncertainty due to intrinsic heterogeneity is taken 

to be dependent only on the average grade and the state of com-
minution of the material.

In such a case, it is possible to state that the three sources of 
uncertainty are statistically independent. Consequently, if it is pos-
sible to determine the probability density functions for each of the 
three sources of uncertainty, it will be possible to calculate the 
probability density function for the sampling protocol as a whole 
by finding the characteristic functions for each of the sources of 
uncertainty, taking their product and inverting this product. Even if 
the probability density function varies with the state of comminution 
of the subsample within the sampling protocol, that change can 
be accommodated within the procedure by introducing additional 
independent density functions into the calculation.

The first source of variance, due to time variation of grade in the 
stream is something about which we know very little in practical 
terms as it is very rare to undertake sampling campaigns in which 
frequent increments are taken with preparation and analysis of indi-
vidual increments. Such information as we have usually comes from 
on-line analysis systems. For the purpose of this analysis, the grade 
variation in the process stream under examination will be simulated 
on a very fine time scale (all potential increments will be created) 
and the stream will be sampled at an appropriate frequency over 
an 8 hour shift.

We know more about the second source of variance if an appro-
priate investigation of the ore is undertaken to determine the size 
distribution of the gold grains. This information is absolutely funda-
mental to the sampling of the material and development of sampling 
protocols. The required information can be developed in conjunc-
tion with gravity recoverable gold studies.

The final source of uncertainty, the analytical uncertainty can be 
determined from laboratory duplicate assay information. It is impor-
tant that such information be uncensored (all assays made must be 
captured by the laboratory information management system). This 
distribution should be Gaussian if the protocol and method is correct.

Example
The calculations will be illustrated by considering a variable feed to 
a gold plant that is treating ore from two different sources, one of 

Figure 1. Typical simulated variation of feed gold grade, showing the switching between the two feed types (bottom trace).
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which has a higher grade than the other and a different size distribu-
tion of gold in the ore. We take the following case:

 ■ Ore A is treated 25% of the time and is the higher grade material
 ■ The switching of the feed between the two sources is random in 
that the duration for which each ore is treated follows an expo-
nential distribution with an expected duration of 10 minutes (high 
grade) and 30 minutes (low grade).

 ■ Both ores carry gold with two distributions of grain sizes to ex-
plore the impact of ‘coarse gold’.

Feed variation and primary sampling density function
A typical trace of the feed gold grade is shown in Figure 1. Both the 
low grade and the high grade material are taken to follow gamma 
distributions of grade. The low grade material has an average of 
2 g/t and the high grade material, 10 g/t. Both distributions have an 
order of two. Their density functions are shown in Figure 2.

The time variations of the grade for both ore types are taken to 
follow random functions with an exponential covariance functions 
with a range of about 70 minutes and are used in such a way that 
the variation in an ore type remains correlated even when inter-
rupted by feeding of the other ore type. This simulates feeding alter-
nately from one of the two ore sources.

The simulated trace of grade as a function of time is sampled at 
a 15 minute period (32 increments per shift) and the grade of the 
accumulated sample is compared to the true grade for the time 
period. The sampling is of course unbiased. The quantity of interest 
is the distribution of the difference between the true unknown grade 
and the grade of the sample as that is the sampling uncertainty. It 
is essentially impossible to calculate this distribution a priori, so the 
simulation method must suffice.

The simulations were run 5000 times, simulating 5000, 8 hour 
periods on a time base of 1 second (28800 points in the simulation) 
Such large simulations require special methods to ensure that the 
simulation is exact. Methods such as sequential Gaussian simula-
tions are not exact. The histogram of differences was extracted and 
was recognised to follow a Laplace distribution very closely (double 
sided exponential distribution). The distribution parameters were 
extracted by a fitting method. The result is shown in Figure 3 and 
the Laplacian model is very good indeed (could this be a general 
result for the sampling distribution?).

The Laplace density function centred on zero is given by
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The tails of the Laplacian distribution are much heavier than a normal distribution. The variance of the distribution is 2a2, so the 

standard deviation of the sampling distribution is 0.566 g/t and a 95% confidence interval is ±1.20 g/t  (±2.21s). 
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The plant feed is considered to have a 95% passing size of 200 mm and to be fed at 1000 tph. The cutter has an aperture of 0.6 m 
and a speed of 0.6 m/s, leading to a primary increment mass of 277 kg, which is numerically equal to the feed rate in kg/s. The in-
crement therefore represents 1 second of plant feed (hence the simulation of the feed on a 1 second basis). The sampling interval is 
15 minutes, providing 32 increments, as noted above. 

The two ores are taken to carry both fine and coarse gold. For convenience, the mass distributions of the gold particles are taken to 
follow Weibull (Rosin-Rammler) distributions. The mass fraction passing at a sieve size d is given by 
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where d <Eq B> is the size at which 0.632 of the sample passes. 

The distributions are shown in Figure 4. 
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where s is the variance of sampling and x <Eq C> is the mean grade and M
S
 is the mass of the sample, the value of the sampling 

constant for the gold will not change until the comminution of the ore is such that the number of gold particles increases due to the 
breaking of the particles. It is not enough to 'liberate' or flatten the particles, they must break. When a subsample is taken at any stage 
in the sample preparation protocol, the only impact is the expected number of gold particles in the subsample. With the smaller mass 
being retained, the sampling variance will increase, but the sampling constant will not change unless the gold particles have been 
broken.  

The situation differs when there are totally barren fragments as these will impact on the sampling constant, but this is not the case in 
this example. 

For the purpose of illustration of the calculation of the total sampling distribution, we will take the sampling to the stage at which we 
have 30 g of comminuted material for fire assay. We will assume that the gold particles have not been broken, but simple flattened by 
the sample pulverisation. 
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where  d̃ is the size at which 0.632 of the sample passes.
The distributions are shown in Figure 4.
In sampling gold ores, it is very important to recognise that the 

objective of sampling is to collect an adequate number of gold 
particles in order to control the variance and distribution of sam-
pling. When there is no dilution, the uncertainty in the grade of the 
sample derives only from the Poisson distribution of the number of 

Figure 2. Probability density functions for the low grade (- - -), high 
grade (- . - .) and average grade (solid line).

Figure 3. Fit of the Laplacian density function to the histogram on an 
interval of 0.1 g/t for the difference between true and sampled shift 
grade. 5000 simulations. Density function parameter = 0.389 g/t.
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gold grains arriving in the sample. It does not matter whether these 
grains are contained in large or small particles of the host rock. The 
link between the number of particles of gold and the grade of the 
sample is the distribution by mass of the gold particles: their size 
distribution. Once the size distribution (or better still, the mass dis-
tribution if the gold is present in particles of a complex structure) is 
defined, the sampling distribution can be calculated.

If a sampling constant, Ks, for the gold is defined such that
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 is the mean grade and 
MS is the mass of the sample, the value of the sampling constant 
for the gold will not change until the comminution of the ore is such 
that the number of gold particles increases due to the breaking of 
the particles. It is not enough to ‘liberate’ or flatten the particles, 
they must break. When a subsample is taken at any stage in the 
sample preparation protocol, the only impact is the expected num-
ber of gold particles in the subsample. With the smaller mass being 
retained, the sampling variance will increase, but the sampling con-
stant will not change unless the gold particles have been broken.

The situation differs when there are totally barren fragments as 
these will impact on the sampling constant, but this is not the case 
in this example.

For the purpose of illustration of the calculation of the total sam-
pling distribution, we will take the sampling to the stage at which 
we have 30 g of comminuted material for fire assay. We will assume 
that the gold particles have not been broken, but simple flattened 
by the sample pulverisation. The grade distribution of 30 g aliquots 
is shown in Figure 5 and has an expected value of 4 g/t.

Analytical density function
Given that the expected grade is 4 g/t, it is not unreasonable to 
assume that the uncertainty attached to the fire assay procedure 
itself is normally distributed. Note that this uncertainty does not 
include the intrinsic heterogeneity of the analytical aliquot. If this 
factor were to be included, the distribution might be skewed. The 
SD is taken to be 0.2 g/t, for the purpose of illustration.

Total sampling distribution
To determine the total sampling distribution, it is necessary to take 
the total uncertainty to be the sum of three random variables: the 
uncertainty due to distributional heterogeneity and a fixed number 
of increments per shift (a Laplace distribution), the uncertainty due 
to the intrinsic heterogeneity of the ore (a skewed distribution) and 
the uncertainty due to the analytical procedure (a normal distribu-
tion). The total distribution is shown in Figure 6.

Discussion
Up to this point in time, assessment of sampling uncertainty has 
been limited to knowledge of the variance of sampling without 
being able to assess whether the sampling distribution is skewed 
or, worse, bimodal.

In the realm of geostatistics, some practitioners have indulged in 
the practice of ‘top cutting’, that is, the discarding or reduction of 
grade values that seem to be too high. These high values destroy 
the ‘normality’ of the data and have adverse effects on the estima-
tion of the variogram. The methods presented here, in combination 
with a full knowledge of the mineralogy of the ore under scrutiny, 
have the ability to determine precisely the distribution of the grades 
of samples, permitting assessment of the probability of observing 

Figure 4. Gold particle size distributions, each a weighted sum of 
Weibull distributions, for low and high grade ore.

Figure 6. Total sampling distribution, with distribution due to sample 
intrinsic heterogeneity for comparison.

Figure 5. Grade distribution of 30 g aliquots of the ore.
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high grade results. At the start of evaluation of a potential orebody, 
one of the first steps should be the determination of the heteroge-
neity of the ore and ore samples so that the exploration samples 
collected are of sufficient mass to yield assay results of a precision 
that are fit for purpose, that is to say, representative. The tools pre-
sented here permit a full assessment for the first time.

In process sampling, especially in sampling a feed or product 
material where metallurgical accounting or product valuation is 
involved, the assumption that grade values follow a Gaussian (nor-
mal) distribution carries significant financial risk. In the metallurgi-
cal accounting setting, skewed grade distributions for assays can 
invalidate the reconciliation of the material balance. The classical 
example of this is the weighted least squares adjustment of assays, 
to arrive at a material balance that closes exactly, that produces 
adjusted tailings grades that are negative. Failure to take non-
normality of tailings (or other process flows) grades into account 
distorts the entire material balance leading to bias in the adjusted 
balance.

In the sale of any commodity, or the valuation of a raw ore for 
toll treatment, knowledge of the sampling distribution is vital to the 
construction of the contract of sale and the development of quality 
reconciliation agreements between the seller and buyer. It is not 
uncommon to see agreements that involve unrealistically narrow 
splitting limits let alone ones that do not take possible skewness of 
grades into account. Responsible development of contracts must 
be based on knowledge of the full sampling distribution of a product 
or ore, so that an operational characteristic curve can be drawn up 
that reveals the financial risk to both seller and buyer.2,3 

Conclusion
The foregoing example demonstrates that it is possible to develop 
a full statistical model of all sources of variance impacting the sam-
pling of a process stream. The method also has potential application 

in geostatistical studies. The method for dealing with ore heteroge-
neity has been dealt with in detail by Lyman.1 A key to the advances 
made here is the recognition that the distribution of the uncertainty 
due to the extraction of primary increments from a process flow can 
be estimated by simulation and that that distribution can be mod-
elled by any suitable means.

The combination of the three sources of uncertainty can be com-
bined using the characteristic function method to arrive at a total 
sampling distributions.

The value of the method is particularly evident when sampling 
ores of precious metals where the material may be nuggetty leading 
to skewed distributions due to the intrinsic heterogeneity of the ore. 
Knowledge of the full sampling distribution is of great value in the 
case wherein an operation is toll treating a gold ore for a client. The 
contract and sampling protocol can be developed with full knowl-
edge of the financial risk involved through the use of an operational 
characteristic curve which depends entirely and directly on the full 
sampling distribution. The fact that the full sampling distribution is 
known is also reassuring to the client.

The statistical basis of the theory of sampling can now be consid-
ered to be complete.
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