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There is a simple and relatively inexpensive way of determining the precision of sampling systems and on-line analysers when a data 
base of output values from the sampling system or on-line analyser can be accessed and there exists serial correlation in the data 
sets. For a sampling system, if it is possible to construct a variogram from the routine data collected, it is possible to extract the 
component of the precision estimate due to material intrinsic heterogeneity, preparation and analysis as this variance is simply given 
by the intercept (nugget variance) of the variogram. To determine the last component of uncertainty, a punctual variogram determined 
from a sampling campaign is necessary. The method is much superior to interleaved sampling, which gives incorrect estimates of 
the precision when serial correlation exists. It is rare to find that there is no serial correlation in plant data. For on-line analysers that 
interrogate a process stream continuously, the variogram constructed from the gauge output for short time intervals can be used to 
determine the precision with no additional effort. The gauge ideally should be operated in such a way that the output is not smoothed 
by some statistical procedure. This paper outlines the methods and illustrates the procedure with data sets from a coal washery.

Introduction

I
t is very useful to be able to determine the precision with which 
a sampling system operates. The ISO Standards say that this 
precision can be found by a process of interleaved sampling, 
but this statement is incorrect when the assays in the process 

stream from which the samples are taken show a serial correlation 
in time (Lyman1). Interleaved sampling also demands that sampling 
be carried out at double the rate of the routine sampling. Building 
this capability into a sampling system increases the system cost.

What is desired is a simple and cost-effective means of estimat-
ing sampling system precision. This can be done by taking advan-
tage of the serial correlation in time that is present in virtually all 
process streams.

Similarly, it is of great importance to be able to estimate the preci-
sion of an output value from an on-line analyser which is interrogat-
ing a process stream continuously. A variogram constructed from 
unfiltered output from the gauge will provide the precision estimate.

This paper provides the mathematical background behind the 
methods of precision determination and illustrates the method 
using data from a coal washery.

Mathematical development
When a process stream is observed by intermittently taking incre-
ments of material from the process stream and analysing them, the 
assay of the increment can be modelled as the sum of a random 
function and a random variable. The random function describes the 
true value of the assays as a function of time and the random vari-
able describes the uncertainty introduced in the determination of 
the assay as a result of the intrinsic heterogeneity of the increment 
and the sample preparation and analysis uncertainties. The relation-
ship can be described as
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Mathematical development 
When a process stream is observed by intermittently taking increments of material from the process stream and analysing it, the assay 
of the increment can be modelled as the sum of a random function and a random variable. The random function describes the true 
value of the assays as a function of time and the random variable describes the uncertainty introduced in the determination of the 
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 ( ) ( )Y t X t= + e  (1) 

where X(t) is the random function describing the true value of the process stream assay at time t and e is a uncorrelated random vari-

able having a distribution corresponding to that of the intrinsic heterogeneity of the increment plus the distributions due to the sample 
preparation and analysis. The random variable is statistically independent from the random function. 

The random function can be characterised by a covariance function or variogram. Consider increments taken at a set of times {t
i
} 

giving rise to a set of measurements {y(t
i
)}. The covariance function of these measurements is then 
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where X
0
 and e

0
 are the expected values of the random function and random variable. Note that the cross-terms between the random 

function and the random variable vanish due to the independence of the two statistical quantities. Taking the expectations above, 
those involving the random variable are zero except when i = j, that is the covariance is the variance of the random function plus that of 
the random variable. We have 

 ( ) ( ){ } ( ){ } ( ){ } { }cov , var var vari iY t Y t Y t X t= = + e  (3) 

If the random function is stationary, the value above is the value of the covariance function for Y at the origin, which can be denoted 
as C(0). The variogram or covariance function estimation will provide a picture of the rest of the function, C(t) which in fact now de-
pends only on the properties of the random function X(t). The covariance function will have the form as shown in Figure 1. The corre-
sponding variogram function is shown at the right of Figure 1. 

 (1)

where X(t) is the random function describing the true value of the 
process stream assay at time t and e is a uncorrelated random 

variable having a distribution corresponding to that of the intrinsic 
heterogeneity of the increment plus the distributions due to the 
sample preparation and analysis. The random variable is statisti-
cally independent from the random function.

The random function can be characterised by a covariance func-
tion or variogram. Consider increments taken at a set of times {ti} 
giving rise to a set of measurements {y(ti)}. The covariance function 
of these measurements is then
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 (2)

where X0 and e0 are the expected values of the random function and 
random variable. Note that the cross-terms between the random 
function and the random variable vanish due to the independence 
of the two statistical quantities. Taking the expectations above, 
those involving the random variable are zero except when i = j, that 
is the covariance is the variance of the random function plus that of 
the random variable. We have
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 (3)

If the random function is stationary, the value above is the value of 
the covariance function for Y at the origin, which can be denoted as 
C(0). The variogram or covariance function estimation will provide 
a picture of the rest of the function, C(t) which in fact now depends 
only on the properties of the random function X(t). The covariance 
function will have the form as shown in Figure 1. The corresponding 
variogram function is shown at the right of Figure 1.
The relationship between the (semi)variogram and the covariance 
function is

 

 
Figure 1 near here 
 

The relationship between the (semi)variogram and the covariance function is 

 ( ) ( ) ( )0t C C t= -g  (4) 

so the variogram starts at zero and rises to a sill value equal to the value of the covariance function at the origin. 
In the operation of an on-line gauge, which may be of the nuclear type (prompt gamma neutron activation), gamma ray (transmission 

gauges) or x-ray fluorescence, the gauge interrogates the process stream and periodically provides an output which is an estimate of 
the composition of the stream with respect to one or more analytes. The output of the gauge can be modelled statistically in the same 
way as above, where X(t) is the true analyte content averaged over some relatively short time period t and e is a random measurement 

error which is uncorrelated from one output value to the next. Some caution must be exercised here as the output from on-line gauges 
can involve the application of an exponentially weighted moving average process to the raw signals, or some other methodology that 
smoothes the output values. The use of such smoothing methods will cause serial correlation of the measurement error component of 
the output and well as modifying the covariance function of the component due to the changing analyte content of the stream. 

The last circumstance to be considered is that in which increments are collected from a process stream over a period of time (a shift 
or day) and then analysed together as a whole. When values from this data stream are analysed variographically, the variogram ob-
served is not the punctual variogram but a punctual variogram which has been regularised (a change of support having been made 
from single points to a set of points) over the period of sampling. This has important implications for the determination of the total 
sampling uncertainty as the punctual variogram is obscured. 

Application to sampling of process streams 
When a sampling system for a process stream is designed and the sampling is mechanically correct, there are three components of 
uncertainty that must be considered: 

• the component due to the fact that there is a difference between the true average analysis of the increments extracted and 
the true average analysis of the process stream over the entire sampling period 

• the component due to the intrinsic heterogeneity of the increments collected and that introduced within the sample prepara-
tion protocol 

• the final analytical uncertainty 
The first component is due to the distributional heterogeneity of the process stream, the second due to intrinsic heterogeneity of the 

material as sampled and at various stages in the sample preparation protocol and the last due to random error in the analysis proce-
dure be it classical or instrumental. 

The first component of uncertainty is determined by the shape and range of the variogram, that is by the time-wise serial correlation 
of the target analyte content of the stream. The second and third components are uncorrelated with the time variation and together 
are a measurement uncertainty. With a punctual variogram determined from the analysis of individual increments, the variogram can 
be extrapolated back to zero to make an estimate of the size of the jump after the origin, as in Figure 2. 

 
Figure 2 near here 
 
The magnitude of the jump is equal to the measurement variance. This determines the sum of the last two components of uncer-

tainty in sampling. The first component can be calculated from the shape of the variogram, providing an estimate of the total sampling 
uncertainty. There is a potential issue, however, with this procedure, namely that the sample preparation protocol for the individual 
increments may differ in a significant manner from that for the usual shift or daily sample. While the analytical variance will be the same 
as for the shift or daily sample (unless multiple assays are routinely carried out and only single assays applied to the individual incre-
ment), the second variance component due to the intrinsic heterogeneity of the material sampled may not match that involved in the 
preparation of the daily sample due to differences in the protocol. 

When dealing with relatively small data sets, as is common when a special sampling program has been carried out, estimation of the 
value of the variogram and intercept can be made by maximum likelihood methods (Lyman2) which are very effective especially when 
the increments have not been extracted on a strictly constant time base. In such a case, the variance of the estimate of the meas-
urements variance can be calculated as well. 

When dealing with a variogram estimated from shift or daily samples, it is still possible to find a variogram and fit or extrapolate to 
find a measurement variance. However, this variogram cannot be used to find the sampling variance due to distributional heterogene-
ity as the compositing of the increments taken into a single sample has obscured the original punctual variogram. In particular, the sill 
of the variogram found will be lower than that for the punctual variogram and the range of the variogram will be longer as a result of the 
averaging process. It is not possible to work backwards to find a unique variogram that, when regularised using the actual sampling 
pattern, will match the observed variogram. There are many possible punctual variograms that will match the observed variogram after 
regularisation. But the intercept of this variogram is equal to the variance due to sample preparation and analysis for the protocol used 
routinely. This variance can be combined with the variance due to distributional heterogeneity determined from the punctual variogram 
to arrive at the correct estimate of the sampling system. 

Therefore the analysis of the data set for shift or daily samples can be combined with the punctual variogram to provide the correct 
answer for the total sampling variance. 

Note that it is an estimation of precision that is made, not an estimation of accuracy; bias cannot be detected in this way. 

 (4)

so the variogram starts at zero and rises to a sill value equal to the 
value of the covariance function at the origin.
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In the operation of an on-line gauge, which may be of the nuclear 
type (prompt gamma neutron activation), gamma ray (transmission 
gauges) or x-ray fluorescence, the gauge interrogates the process 
stream and periodically provides an output which is an estimate of 
the composition of the stream with respect to one or more analytes. 
The output of the gauge can be modelled statistically in the same 
way as above, where X(t) is the true analyte content averaged over 
some relatively short time period t and e is a random measurement 
error which is uncorrelated from one output value to the next. Some 
caution must be exercised here as the output from on-line gauges 
can involve the application of an exponentially weighted moving 
average process to the raw signals, or some other methodology 
that smoothes the output values. The use of such smoothing meth-
ods will cause serial correlation of the measurement error compo-
nent of the output and well as modifying the covariance function of 
the component due to the changing analyte content of the stream.

The last circumstance to be considered is that in which incre-
ments are collected from a process stream over a period of time (a 
shift or day) and then analysed together as a whole. When values 
from this data stream are analysed variographically, the variogram 
observed is not the punctual variogram but a punctual variogram 
which has been regularised (a change of support having been made 
from single points to a set of points) over the period of sampling. 
This has important implications for the determination of the total 
sampling uncertainty as the punctual variogram is obscured.

Application to sampling of process streams
When a sampling system for a process stream is designed and the 
sampling is mechanically correct, there are three components of 
uncertainty that must be considered:

 ■ the component due to the fact that there is a difference between 
the true average analysis of the increments extracted and the 
true average analysis of the process stream over the entire sam-
pling period

 ■ the component due to the intrinsic heterogeneity of the incre-
ments collected and that introduced within the sample prepara-
tion protocol

 ■ the final analytical uncertainty
The first component is due to the distributional heterogeneity of 

the process stream, the second due to intrinsic heterogeneity of the 
material as sampled and at various stages in the sample preparation 

protocol and the last due to random error in the analysis procedure 
be it classical or instrumental.

The first component of uncertainty is determined by the shape 
and range of the variogram, that is by the time-wise serial correlation 
of the target analyte content of the stream. The second and third 
components are uncorrelated with the time variation and together 
are a measurement uncertainty. With a punctual variogram deter-
mined from the analysis of individual increments, the variogram can 
be extrapolated back to zero to make an estimate of the size of the 
jump after the origin, as in Figure 2.

The magnitude of the jump is equal to the measurement variance. 
This determines the sum of the last two components of uncertainty 
in sampling. The first component can be calculated from the shape 
of the variogram, providing an estimate of the total sampling uncer-
tainty. There is a potential issue, however, with this procedure, 
namely that the sample preparation protocol for the individual incre-
ments may differ in a significant manner from that for the usual shift 
or daily sample. While the analytical variance will be the same as for 
the shift or daily sample (unless multiple assays are routinely carried 
out and only single assays applied to the individual increment), the 
second variance component due to the intrinsic heterogeneity of 
the material sampled may not match that involved in the preparation 
of the daily sample due to differences in the protocol.

 
Figure 1. Covariance (left) and variogram (right) functions in the presence of measurement error.

Figure 2. Backward extrapolation of a variogram to estimate the meas-
urement variance.



Issue 5  2015 113TOS f o r u m

w c s b 7  p r o c e e d i n g s

www.impublications.com/wcsb7

When dealing with relatively small data sets, as is common when 
a special sampling program has been carried out, estimation of the 
value of the variogram and intercept can be made by maximum like-
lihood methods (Lyman2) which are very effective especially when 
the increments have not been extracted on a strictly constant time 
base. In such a case, the variance of the estimate of the measure-
ments variance can be calculated as well.

When dealing with a variogram estimated from shift or daily sam-
ples, it is still possible to find a variogram and fit or extrapolate to 
find a measurement variance. However, this variogram cannot be 
used to find the sampling variance due to distributional heterogene-
ity as the compositing of the increments taken into a single sam-
ple has obscured the original punctual variogram. In particular, the 
sill of the variogram found will be lower than that for the punctual 
variogram and the range of the variogram will be longer as a result 
of the averaging process. It is not possible to work backwards to 
find a unique variogram that, when regularised using the actual 
sampling pattern , will match the observed variogram. There are 
many possible  punctual variograms that will match the observed 
variogram after regularisation. But the intercept of this variogram 
is equal to the variance due to sample preparation and analysis for 
the protocol used routinely. This variance can be combined with 
the variance due to distributional heterogeneity determined from the 
punctual variogram to arrive at the correct estimate of the sampling 
system precision.

Therefore the analysis of the data set for shift or daily samples can 
be combined with the punctual variogram to provide the correct 
answer for the total sampling variance.

Note that it is an estimation of precision that is made, not an esti-
mation of accuracy; bias cannot be detected in this way.

Application to on-line analysers
If the output from the on-line analyser has not been interfered with 
by averaging methods, the precision of the analyser on a punctual 
basis can be estimated. Note again that it is precision that is being 
estimated, not accuracy.

The current practice in the estimation of the precision of on-line 
analysers usually rests with the use of the Grubbs estimator (Lyman 
et al.3), which requires the use of two reference measurements in 
addition to the data from the gauge. It is necessary to coordinate 

the recording of signals from the gauge and the collection of physi-
cal samples of the material analysed in two independent ways in 
order to put this method into place. It is also desirable to ensure that 
the precision of the two reference measurements are better than 
that of the gauge; this can be difficult, given sampling problems.

By contrast the variogram approach for estimating analyser pre-
cision requires no additional effort. The estimate is derived directly 
from the gauge output. It is therefore very inexpensive and effective. 
On-line analysers produce a large volume of data as they generally 
produce an output value at any desired interval. A largest source of 
measurement variance may be the counting statistics for nucleonic 
systems, which ensures that the component of measurement error 
is independent from one reading to the next.

As for sampling, the estimate of measurement variance involves 
only the estimation of a variogram with backward extrapolation to 
the origin to find the intercept. With the large data sets from on-line 
analysers, the maximum likelihood method of variogram estimation 
is not practical.

Example
This example is drawn from data collected both from an on-line 
analyser and a conventional sampling system producing assays 
about every 6 hours. The operation of the conventional sampling 
system is somewhat erratic. The washery in question treats a num-
ber of types of coal with widely varying ash content. The on-line 
analyser interrogates all these feed coals on the same belt.

The conventional sampling system data was analysed on a per 
coal type basis in order to pick up the serial correlation for those 
coal streams. Figure 3 shows the data for coal type A as a function 
of tonnes of coal sampled.

The upper trace in Figure 3 is the actual coal ash content as 
sampled and the solid dark line is the trend line through the data 
determined by locally weighted regression. The lower trace is the 
deviation from this trend line. De-trending of the data is mandatory 
before calculating a variogram as this method can be applied only 
to stationary data. It is also desirable to apply the method to data 
that follows a Gaussian distribution as all theory and tools attached 
to variogram estimation assumes normality of the data. Figure 4 
shows the deviation data after having been transformed to z-scores 
(standard Gaussian deviates of zero mean and unit variance). The 

Figure 3. Ash content of coal type A as a function of tonnes of coal sampled. Lower curve shows deviations from trend (black).
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variogram is calculated using this transformed data using the con-
ventional Matheron estimator. Note that the variogram is based on 
actual assay results rather than a measure of heterogeneity as is 
often done when following Gy’s methodology. The interest here is in 
the assay uncertainty and not a measure of heterogeneity. The error 
bars on the variogram represent a ± 1 SD interval for the variogram 
estimate at the given lag. The variogram derived from the data of 
Figure 4 is shown in Figure 5.

The intercept of the z-score variogram can be found either using 
the first two points on the variogram or by fitting an admissible vari-
ogram function to the data. The intercept value is rescaled using 
the variance of the untransformed deviation data about their mean. 
Dividing the square root of the scaled intercept value by the mean 
ash content of the un-detrended data then provides a relative 
standard deviation for the measurement uncertainty. In this case 
the RSD is 17.2% ash. This indicates that there are serious prob-
lems with the sampling system or the manner in which the sample 
is prepared and analysed.

The corresponding data for coals B and C are shown in Figures 
6 and 7. The RSD for coal B is 14.3% and for coal C 16.0%. The 

consistency of the estimates of the RSD underlines their validity, 
given that they are passing through the same sampling system. The 
ranges of the variograms are similar for coals A and B; that for coal 
C is longer. However, the last data set is relatively small and the 
variogram less well-defined.

The analysis of the gauge precision is based on one month of 
outputs at two minute intervals. The gauge is a prompt gamma 
neutron activation type (Realtime Group Allscan gauge).

The data for low ash coal is shown in Figure 8; there are just over 
7000 data points in the data set. The z-score variogram is shown in 
Figure 9. The right hand frame shows a closer view of the behaviour 
of the variogram near the origin. The SD of a two minute reading is 
2.12% ash or 23.7% relative.

The corresponding data for high ash coal is shown in Figure 10 
with the z-score variogram in Figure 11. The SD of a two-minute 
reading is 3.04% ash or 12.0% relative.

It is interesting to consider the gauge measurement uncertainty 
over a period longer than 2 minutes. Because the gauge is meas-
uring continuously, there is no uncertainty due to distributional 
heterogeneity such as would arise if punctual increments were 

Figure 5. Variogram for coal A as sampled using z-score values, with a fitted exponential variogram. The intercept value is 0.284 from the fit.

Figure 4. Z-scores for the deviation data of Figure 3.
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being taken as in conventional sampling (the gauge misses noth-
ing). Consequently, the measurement variance is simply inversely 
proportional to the number of two minute readings that are aver-
aged. For a 6 hour period, there are 180 readings so the RSDs 

are reduced to 1.77% (SD = 0.158% ash) for the low ash coal and 
0.894% (SD = 0.227% ash) for the high ash coal. As long as there 
is no bias in the gauging system, the gauge accuracy over a 6 hour 
period is extremely good. Over a daily period, the figures above 

Figure 8. On-line analyser data for low ash coal (yellow) showing de-trending (black) and deviation values from the trend (green).

 
Figure 6. Data, detrending and z-score variogram for coal B.

 
Figure 7. Data, detrending and z-score variogram for coal C.
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are reduced by half to deliver standard deviations of 0.076% ash 
and 0.114% ash respectively. These figures can be compared to 
the standard deviations of a single ash determination by Australian 
Standard 1038 of 0.05% ash and 0.085% ash.

By comparison, as long as the gauge is bias free (and the sam-
pling system as well), the sampling system performance leaves a 
great deal to be desired.

This example points up the problems of attempting to calibrate 
an on-line gauge for coal ash and coal ash constituents against 
routine samples taken over the measurement period. To be of value 
in this setting, the sampling system must be unbiased and very pre-
cise. Conventional sampling systems rarely deliver this accuracy, so 
calibration against such sampling systems is impractical. A gauge 
manufacturer must offer a robust factory calibration procedure and 
this must be accepted by the buyer.

Conclusions
The determination of the precision of a sampling system requires 
that the punctual variogram for the process stream be known with 
some accuracy and that the variance due to the intrinsic heteroge-
neity of the primary increments as well as the variance added during 
sample preparation and analysis be known. The latter measurement 
uncertainty can be determined from analysis of a variogram based 
on consecutive samples (not increments) taken by the sampling 
system. With both these sources of information, the total sampling 
variance can be calculated.

 
Figure 9. Variogram for low ash coal derived from on-line analyser z-score data. The right hand frame shows a closer view of the behaviour of the vari-
ogram near the origin.

Figure 10. On-line analyser data for high ash coal showing de-trending and deviation values from the trend.

Figure 11. Variogram for high ash coal derived from on-line analyser 
z-score data.
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The precision of an on-line analyser can be determined from a 
variographic analysis of the gauge output, as long as the gauge has 
not been set up to smooth the output by some statistical procedure 
such as a moving average. The unadulterated output on a small 
time interval must be available for construction of the variogram. 
The precision of the gauge over longer measurement time intervals 
is not affected by the time variation of the analyte content in the 
process stream because the gauge ‘sees’ all of the stream all of the 
time; there is no error due to distributional heterogeneity. Therefore 
the precision over longer time intervals can be determined by the 
classical formula for the standard deviation of the mean of inde-
pendent quantities. If there are N measurements in the gauging 
period, the final precision is simply 1/ÖN times the precision deter-
mined from the variogram.

References
1. G. J. Lyman, “Estimation of sampling variance and quality variance 

about the mean by interleaved sampling”, Proceedings of the 5th World 

Conference on Sampling & Blending, Santiago, Chile, Gecamin, 2011, 

pp 175-184

2. G. J. Lyman, “Variograms: properties and estimation”, Proceedings of 

the 6th World Conference on Sampling & Blending, Lima, Peru, Gecamin, 

2013, pp 185-206

3. G. J. Lyman, F. Lombard, D. Edward, and C.J. Clarkson, “Determination 

of the precision of on-line coal analysers – Theory and practice”, Pro-

ceedings of the 7th Australian Coal Preparation Conference, J. Smitham 

(ed), Australian Coal Preparation Society, 1995, pp 324-355.




