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Introduction and first ever rigorous derivation of the 
liberation factor
Dominique M. Francois-Bongarcon, PhD
Agoratek International Consultants Inc., North Vancouver, Canada. E-mail: dfbgn2@gmail.com

A simplified approach to the demonstration of Gy’s Theory of Sampling (TOS) sampling variance formula is proposed, with the added 
advantage that it clarifies the real assumptions that are necessary to lead the demonstration to its end. In the process, the introduction 
of the liberation factor in TOS is also clarified and, for the first time, a rigorous definition of that factor is offered, which naturally lead 
to its modelling in past years using geostatistical concepts. A generalised from for the mineralogical factor c is also proposed in an 
appendix.

Introduction
We will use the following notations and conventions:

Large lot L: Mass = ML, made of NL fragments fj(tj, mj) 
where tj and mj are the grades and masses of individual 
fragments 
Sample S: Mass = MS, made of NS fragments fi(ti, mi)

For the lot (summations on sub-index j by convention):

m— L = ML / NL = Sj mj / NL 
 
tL = Sj mj tj / ML = Sj (mj tj / m

—
L) / NL  (grade of the lot)

Similarly for a small sample (summations on sub-index i by conven-
tion):

m— S = MS / NS = Si mi / NS 
 
tS = Si mi ti / MS = Si (mi ti / m

—
S) / NS

Important assumptions
We will assume sampling in number (the equivalence to sampling 
in mass was established by Matheron1 (2015) so that NS is a fixed 
number for all the samples.

Var(mi) is limited and NS is a very large number, so that Var(m— S) = 
Var(mi) / NS is small. Additionally, if the sample is correct, E(m— S) = 
m— L. As a result:

m— S can be assimilated to m— L in “good approximation”

This FUNDAMENTAL approximation is equivalent to assuming 
exact representation in the sample of the average fragment mass 
in the lot. This, which includes the neglecting of the small variations 
in total mass MS from sample to sample, is the origin of the math-
ematical difficulty of Gy’s and Matheron’s rigorous demonstrations, 
and of the first order approximation that characterises their result.

Relative sampling error
Under these conditions, the relative sampling error is:

eRS = (tS – tL) / tL = Si [(mi / m
—

L)(ti – tL) / tL] NS = Si hi / NS  
(i.e. the arithmetic mean of the independent hi in S)

where hi = [(ti – tL) / tL](mi / m
—

L) (see TOS terminology in Appendix 1)
Properties of hi:

h– L = Sj (mj tj / m
—

L) / (tL NL) – tL / tL = 1 – 1 = 0, therefore 
 
Var(hi) = Sj [(tj – tL) / tL]

2(mj / m
—

L)
2 / NL = CHL  

(see TOS terminology in Appendix 1)

Relative sampling variance
Since: e–RS = 0

sR
2 = Var(eRS) = Var(hi) / NS = CHL / NS = (m— L / MS) CHL

And as: CHL = Sj [(tj – tL) / tL]
2 mj

2 / (m— L ML):

sR
2 = (1 / MS) Sj [(tj – tL) / tL]

2 mj
2 / ML (for large lots)

For smaller lots, because (in geostatistical notations):

D2(MS | ¥) = D2(MS | ML) + D2(ML | ¥)

in all cases, we have:

sR
2 = (1 / MS – 1 / ML) Sj [(tj – tL) / tL]

2 mj
2 / ML

This is Gy’s and Matheron’s first order approximation of the 
sampling variance.

Below liberation, by separating mineral and gangue fragments 
in the summation, this formula can easily be transformed into the 
fully calculable quantity (see demonstration in Appendix 2):

sR
2 = (1 / MS – 1 / ML) c fG g d3

NG = (1 / MS – 1 / ML) C dN
3

where C is a calculable constant in which c is a generalized miner-
alogical constant, and dNG = dN is the comminution size of the lot.

Above liberation, it is not calculable, but somewhat smaller than 
if liberation had been achieved, so, introducing a number l between 
0 and 1, we can write:

sR
2 = (1 / MS – 1 / ML) c fG l dN

3  with 0 < l < 1

Gy’s well-known theory ends here, with no status given to l, unfor-
tunately precluding its (necessary) modelling.
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We need to go further and:
 ■ uncover the physical meaning of l
 ■ find the factors affecting it
 ■ find a model for its variations

Important note:
One should mention there was one valuable attempt by Gy at mod-
elling l using the maximum grade achievable by a fragment at nomi-
nal size (Pitard, 2015).2 This work was of theoretical interest, but it 
was not practical and only established (therefore valid) under very 
restrictive conditions.

However, in Francis Pitard’s words, this method “...showed 
quite well the relation of the liberation factor with mineralogy. For 
example, the liberation curve may look completely different if it is 
individual and isolated gold particle that liberate, or if it is a cluster 
made of many particles side by side, or if you prefer an aggregate 
of many particles.”

This said, full, general modelling of l calls for geostatistical con-
cepts that were simply not available at the time Gy was publishing 
TOS.

True definition of the liberation factor
In the liberated case, for a given, correct sample S, from a much 
larger, liberated lot:

Rel.Var.[S] = c f g dN
3 / MS

As we stated above, reasoning shows that when the ore is NOT 
liberated, the sampling variance is necessarily somewhat lower. As 
a result, for a given, sample S, from a large, non-liberated lot, by 
introducing a number l between 0 and 1, Gy wrote:

 Rel.Var.[S] = [c f g dN
3 / MS] l  with 0 < l < 1 (1)

Now, let SLib be a correct sample, taken the same way, in the 
LIBERATED lot, with the same average number of fragments N as 
in S, i.e. with mass MLib such that:

MLib = N m— Lib  with N = MS / m
—

L 
 
m— Lib and m— L being the average fragment masses in the 
liberated and non-liberated lots.

 Rel.Var.[SLib] = c f g dl
3 / MLib (2)

In our model:

m— Lib / m
—

L = f g dl
3 / f g dN

3 = (dl / dN)3 = MLib / MS

So that we can replace MLib by MS (dl / dN)3 in (2):

Rel.Var.[SLib] = c f g dl
3 / MLib = c f g dl

3 / [MS (dl / dN)3]

Or:

 Rel.Var.[SLib] = c f g dN
3 / MS (3)

Therefore, dividing (1) by (3):

 l = Rel. Grade Var.[S] / Rel. Grade Var.[SLib] (4)

This new equation, ratio of the sample variance to the variance of 
the liberated sample with the same average number of fragments, 
is valid and constant for any sample (or sample mass), and provides 
us with a precise, rigorous and objective definition of factor l.

Models for l based on this characterisation have been the objects 
of numerous papers by the author. Equation (4) amounts to a ratio 
of variances of two different fragment sizes (in the lot being sampled 
and in the liberated one), and this ratio could only be modeled by 
drawing from geostatistical considerations.
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Appendix 1
Some TOS Classical Definitions
RELATIVE HETEROGENEITY carried by fragment fi in lot L:

hi = [(ti – tL) / tL] (mi / m
—

L)

CONSTITUTION HETEROGENEITY of lot L:

CHL = Sj [(tj – tL) / tL]
2 (mj / m

—
L)

2 (m— L / ML) 
 = Sj [(tj – tL) / tL]

2 mj
2 / (m— L ML)

It is a characteristic (weighted variance) of the “average 
fragment” in the lot and it measures the intrinsic variability 
of the lot.

HETEROGENEITY INVARIANT of lot L:

HL = CHL m
—

L

http://dx.doi.org/10.1255/tosf.80
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Appendix 2
At liberation size and below

sR
2 = (1 / MS – 1 / ML) c fG g d3

NG = (1 / MS – 1 / ML) C dN
3

Summing on Mineral (M) and Gangue (G) with respective sub-indices i and j:

sR
2 = (1 / MS – 1 / ML){

MSj [(tj – tL) / tL]
2 mj

2 / ML + GSi [(ti – tL) / tL]
2 mi

2 / ML}

For the mineral, tj = 1 and for gangue ti = 0, so, introducing the densities rM and rG and fragment volumes vi and vj:

sR
2 = (1 / MS – 1 / ML) {[(1 – tL) / tL]

2 MSj mj
2 / ML + GSi mi

2 / ML} 
 
sR

2 = (1 / MS – 1 / ML) {[(1 – tL) / tL]
2 rM MSj vj mj / ML + rG GSi vi mi / ML}

Now:
MSj vj mj / ML = (MM / ML) 

MSj [(mj / MM) vj]

MM / ML = tL and MSj [(mj / ML) vj] is the mass-weighted average mineral fragment volume v–M in the lot, so that:

MSj vj mj / ML = tL v
–

M

Similarly:

GSi vi mi / ML = (1 – tL) v
–

G

where v–G is the mass-weighted average gangue fragment volume in the lot.
So now:

sR
2 = (1 / MS – 1 / ML) {[(1 – tL) / tL]

2 rM tL v
–

M + rG (1 – tL) v
–

G}

finally:

sR
2 = (1 / MS – 1 / ML) [(1 – tL) / tL] [(1 – tL) rM v–M + tL rG v–G]

Let us introduce the volume ratio k = v–M / v–G:

sR
2 = (1 / MS – 1 / ML) [(1 – tL) / tL] [(1 – tL) k rM + tL rG] v–G

In this expression,

c = [(1 – tL) / tL] [(1 – tL) k rM + tL rG]

is the “generalised mineralogical factor” and

sR
2 = (1 / MS – 1 / ML) c v–G

This is a very important formula, which actually is the true variance formula. It shows the lot behaves, in terms of sampling it, exactly as 
a hypothetical lot with all fragments having the same size corresponding to the average gangue fragment volume.

Calculation of constant k in factor c
Introducing Gy’s classical granulometric factor g, liberation size dl, the shape factors fM and fG and the nominal comminution sizes dNM s dl 
and dNG s dl of mineral and gangue:

v–M = fM g d3
NM  and  v–G = fG g d3

NG 
 
k = v–M / v–G = (fM / fG) (dNM / dNG)3
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Particular cases:
 ■ Mineral and gangue comminute together and have the same shape factors: 

then k = 1
 ■ Mineral and gangue comminute together and have different shape factors:

then k = fM / fG
 ■ Mineral does not comminute below liberation size (e.g. gold grains) while gangue is comminuted to size dN:

then: k = (fM / fG) (dl / dN)3 in general,
or: k = (dl / dN)3  if  fM = fG

 ■ Special cases can be calculated as well. For instance, if the mineral has a unique size instead of a size distribution, one can take g = 1 
for mineral grains in the definition of v–M.

In all cases, the relative variance then becomes:

sR
2 = (1 / MS – 1 / ML) c fG g d3

NG = (1 / MS – 1 / ML) C d3
NG

where C is a calculable constant.

Note: in the case of non-comminutable gold (third bullet above), this expression reduces to the following approximation:

sR
2 = (1 / MS – 1 / ML) (rM / tL) fM g dN

3

which is why, in that case, the shape factor to be used is that of the gold grains.


