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In archaeology it is of interest to ascertain whether a particular Bronze-age field has been cultivated or not based on traditional 
archaeological evidences, but these often deal with one chemical element only, Phosphorous. We here augment this endeavour 
to include multi-element geochemistry characteristics. A pilot study sampling campaign was carried out (2014) on the island of 
Bornholm with the objective to discriminate between well-documented cultivated and un-cultivated Bronze-age agricultural fields 
based on multivariate data analysis (chemometrics) of soil chemistry (metal concentrations, ICP-MS). All samples originate from 
the same soil depth corresponding to the paleo-cultivated layer, or the equivalent depth in uncultivated fields. The experimental 
design focused on proper field sampling (Theory of Sampling), including replicate sampling at two levels. Applying Principal 
Component Analysis (PCA), the first three components corresponds to 68 % of the most discriminative variance in the 15 
variable/41 sample array. The first and third PC-component reveals a complete discrimination of un-cultivated vs.3 cultivated 
fields; it is likely that general soil chemistry features are compensated for by the second component in the PCA solution. We 
present the specifics pertaining to the field sampling procedure, including the hierarchical two-level experimental design, which 
allow assessment of the local vs. field-wide heterogeneities in order better to understand the successful discrimination achieved. 
Five elements appear to be particularly involved in the discrimination [P, Fe, Mn, Zn, Pb], currently undergoing paleo-agricultural/
geochemical interpretation. Based on these first results we plan a full test-set validation campaign in 2015 which will be the 
ultimate performance test for this type of archeometric discrimination. This contribution illustrates the versatility and power of 
multivariate data analysis (chemometrics) applied to data with a substantial proportion of potential sampling errors, in need of 
effective management (TOS).

Introduction

B
ornholm is a minor Danish island in the Baltic Sea 
known for a diverse, interesting geology – and a mag-
nificent archaeological venue with a great number of 
Celtic (Bronze age) agricultural fields, which date back 

to the first century BC. The Celtic field systems have been recog-
nized and documented for more than 100 years, but little is known 
to how the fields were cultivated and what crops were grown. The 
primary knowledge is related to different indirect evidence in the 
form of Agricultural tools, and crops, found on secondary loca-
tions, typically settlements. The aim of this pilot project was to 
gain information from the primary sources, the cultivated fields 
themselves. By introducing geochemical fingerprinting of the sub-
soil from both cultivated and pristine fields, and applying Multi-
variate Data Analysis (MVDA), this project entertains whether it is 
possible to discriminate between cultivated and uncultivated fields 
of Celtic age on this basis. It is hoped that this may contribute to 
increased insight into the different agricultural methods and strate-
gies that were used in Late Bronze Age and Early Iron Age. For this 
purpose Bornholm is an obvious location due to a comprehen-
sive documentation of Celtic fields and due to the geomorphol-
ogy, which allows archaeologists to distinguish between cultivated 
and uncultivated areas with ease and certainty, which is important 
classification information to be used in training a data analytical 
discrimination facility.

Data analysis – from univariate to multivariate
Traditional archeological data analysis in this context has over-
whelmingly been an univariate approach, i.e. a directed focus on 
just one element, Phosphorous, which has been used extensively 
as a ‘signal element’ due to its increased concentration in manure 
that has been used as fertilizer. In the present study this univari-
ate approach shows severe limitations however, for which reason 
a multivariate approach may act better in discriminating between 
fields based on a full series of 15 geochemical elements. General 
knowledge as to which elements might correlate with Phosphorous 
in cultivated fields is sparse however; Nielsen et al. (2014) showed 
in a similar multivariate study that Sr conceivably correlate with 
cultivated fields due to addition of bone fragments and household 
waste. Information is also scanty regarding how the geochemi-
cal fingerprints of uncultivated fields might appear in this context. 
We have therefore adopted a multivariate data analysis approach 
(Chemometrics) without any prerequisites or assumptions, letting 
the data speak for themselves. The archeological field use discrimi-
nation is an important piece of the puzzle.

Theory of Sampling (TOS)
TOS is also a critical agent in this endeavor: The validity of analyti-
cal results is exactly as good, or bad, as the validity of the primary 
sampling, as well as of all sub-samples produced in the labora-
tory on the pathway to the analytical aliquots. The primary – and 
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secondary sampling in this project was in complete TOS-control, 
DS 3077 (2013), with a strong emphasis on unbiased field sam-
pling and subsequent mass-reduction (riffle-splitting). The tertiary 
sampling consisting of spatula extraction of the analyte (0,5-1,0 
gram) was carried out in and by the analytical laboratory involved 
(interesting minor sampling error effects were detected here, fully 
reported elsewhere in the first authors M.Sc. thesis; luckily these 
were detected early and were not of a magnitude to interfere with 
the first order conclusions reported below).

In order to quantify the Total Sampling Error (TSE) and to evalu-
ate the magnitude of the soil heterogeneity on different levels, two 
experimental designs were embedded in the field sampling plan.

Methods
Primary sampling was conducted in August 2014, where mild 
weather resulted in dry soils, giving optimal conditions to distin-
guish between different soil horizons, and in general making field 
sampling easier. Due to the need for comparison between the final 
data, the entire sampling campaign was carried out under identical 
conditions.

Two cultivated fields, A & B and one uncultivated field, X were 
sampled on the same day, in which a total of 41 samples were col-
lected. The three fields are located in the now forested area “Vestre 
Indlæg”, Figures 1 and 2a, and have never been involved in previ-
ous studies. The stratum of interests, according to archeological 
experiences, manifests itself as a yellow quartz-rich sand underlying 
a purple heather-rich sandy topsoil, which was found just under the 
contemporary O horizon. The purple, heather-rich topsoil was used 
as an upper boundary demarcation due to its marked, recognizable 
characteristics, while the lower boundary of the target stratum was 
not identified (generally located 45-55 cm below the surface in the 
area).

The fields were prepared with 9 sampling locations for the uncul-
tivated field X and 10 sampling locations for each of the two culti-
vated fields A & B. For the latter two, different sampling plans were 
chosen: Cultivated field A was sampled along a transect while the 
cultivated field B was sampled in a random grid within the arche-
ologically delineated boundary. The uncultivated field X was also 
sampled along a transect which constituted an extension of the 

transect for field A, Figure 1. The experimental design thus totals 
29 samples. Each single sample was collected as a 4-increment 
composite sample as explained below.

Primary sampling
Each cross in Figure 1 denotes a sample location, approx. 
20 × 20 × 20 cm. The vertical dimension of the sample dug outs 
was constant in order not to incur unnecessary Increment Delimita-
tion Error (IDE). A four-increment composite sample was manually 
collected from each box with a combined use of a garden shovel 
and a trowel, Figure 2b. Each increment was composed of an equal 
volume scrape-off material from one side of the box. In the field, 
when aggregated these four increments were deemed to consti-
tute a representative, Incorrect Sampling Error (ISE)-eliminating and 
Correct Sampling Error (CSE)-minimizing composite sample. Identi-
cal use of the sampling tools allowed a minimum Increment Delimi-
tation Error, Increment Extraction Error (IEE) & Increment Prepara-
tion Error (IPE) (the precise trowel was used to scrape off material 
into the garden shovel which was used to allow all the scraped-off 
material to be carefully collected – eliminating spillage and/or con-
tamination). This sampling procedure also honors the Fundamental 

Figure 1 a,b. Location and pilot study area on the Danish island of Bornholm (Baltic Sea)

Figure 2 a,b. Line transect (left) and expanded local embedded sam-
pling (“box”) (right), see text for details.
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Sampling Principle (FSP) because the soil underlying the entire loca-
tion has an equal possibility to end up as a part of the sample (the 
edge direction of the sample dug out was chosen at random; there 
should always be some random element in all good sampling pro-
cedures).

Local embedded sampling
In order to be able to quantify the heterogeneity at different field 
scales, an additional experiment was embedded in the overall 
experimental plan described above. For each of the three fields (at 
a randomly selected location along the transects or within the grid), 
a small-scale replication experiment, DS 3077 (2013) was carried 
out in the form of four additional field samples arranged in a “box-
like” pattern, Figure 2b.

The standard dugout was here expanded in size to approx. 
100 × 100 × 40 cm which allowed improved pedological charac-
terization as a basis for a larger sample size. These special samples 
were collected using the same general protocol as previous, but 
all four sides were now specifically not combined to form a com-
posite sample. Instead each side was sampled separately along 
the entire wall face. This resulted in four individual ‘parallel’ sam-
ples (designated w, x, y and z) + the existing composite sample (c) 
belonging to the transect (or grid). This set up allow quantification 
of the local heterogeneity for each field commensurate with dimen-
sions 100 × 100 cm (termed embedded “boxes”). This replication 
scheme added 12 samples, the entire pilot project now totaling 41 
samples.

Laboratory sample processing
Laboratory sample preparations comprised drying, homogeniza-
tion and sieving through a 2 mm sieve. The sieving process was 
carried out with an effort to minimize spillage (IPE). After sieving, 
the samples were mass reduced using a RAKO Riffle Splitter (32 
chutes) to a sample size of 2-3 gram. Laboratory mass reduction 
meets all the requirements for representative mass reduction as laid 
out by Petersen et al. (2004). Finally the samples were analyzed for 
15 geochemical elements by Inductively Coupled Plasma analysis 
(ICP), courtesy of Aalborg University, campus Esbjerg.

Lot characterization
Field heterogeneity
Traditionally it has been argued, that for comparison between the 
geochemistry of different fields, only one single ‘representative’ 
sample is needed from each. There are countless examples in the 
literature where ‘representativity’ is only assumed for a single grab 
sample however, very often without proper documentation. But 
from even a cursory examination of this approach, in the light of 
TOS’ understanding of heterogeneity, it is extremely likely that this 
can never result in reliable conclusions. A single sample is a grab 
sample w.r.t. the field it is supposed to represent; there is no way 
this can express both the local as well as the “global” field het-
erogeneity in a valid fashion; such an approach is therefore not to 
be considered trustworthy. Any singular grab sample from any one 
field cannot be representative hereof without specific proof.

Therefore the primary field sampling constitutes a replication 
experiment with respect to the full heterogeneity within each field. 
The overall heterogeneity can be regarded as a specific signature, 
characteristic of the scale pertaining to cultivated as well as uncul-
tivated fields, but it cannot necessarily be assumed to be identical 

between fields, Figures 3 and 5. Thus 9 (or 10) composite samples 
from each field constitutes a replication experiment allowing reli-
able aggregated results, and also to detect, and remove, outliers, 
whether defined by the heterogeneity or TSE (one analytical outlier 
was detected only because of this type of inter-leaved replication 
experiments in the ultimate laboratory stage). Each field is at the 
outset considered as a unique sampling target characterized by 
9(10) samples covering the specific lot geometry. 9/10 were cho-
sen based on the available logistical constraints (this number could 
alternatively had been higher, e.g. 20 if no economical, practical, or 
logistical sampling limitations had existed).

The sample plans were laid out at random – either as a randomly 
selected transect direction, or as a randomly oriented grid. Repli-
cate samples from each field are hypothesized to correlate stronger 
within-group than with respect to between-group (between-fields). 
The two cultivated fields A & B are also assumed to correlate 
stronger between themselves contra the uncultivated field X. Such 
relationships would be expected if the geochemical discrimination 
hypothesis is to be substantiated. But does this hold for all geo-
chemical elements analyzed for? Or just for a few?

Local embedded replicate experiment
The sampling process of the “local” box replication experiment was 
described above, allowing quantification of the heterogeneity per-
taining to this local scale. It is a fair assumption that with five sam-
ples it should be possible to express the local heterogeneity with 
reasonable resolution; these samples should be correlated stronger 
with each other than with respect to the whole field data, see Figure 
5 below.

Univariate data analysis
A traditional univariate data analysis, visualized as a box plot, Figure 
3, is carried out for Phosphorous based on data from the three 
local replication experiments and full field data, allowing to charac-
terize and compare the local and global heterogeneity of each field. 
Figure 3 will also show to which degree it is possible to distinguish 
between cultivated and uncultivated fields within this traditional uni-
variate regime.

Table 1 presents the relevant averages and standard devia-
tions. Comparing the three sets of “Box characterizations” it is not 

Figure 1 a,b. Location and pilot study area on the Danish island of Bornholm (Baltic Sea) 

 

 

Figure 2 a,b. Line transect (left) and expanded local embedded sampling (“box”) (right), see text for details. 

 

Figure 3. Box-plots of field vs. box heterogeneity characteristics for the element Phosphorous 
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possible to conclude that fields A & B are in fact both cultivated. On 
the contrary, if this approach is used one would probably conclude 
that field B was cultivated (because of its elevated P levels) while 
field A and field X represent uncultivated areas. This is manifestly 
incorrect however – and the univariate approach fails. The box plot 
evidence also pictures the difference between the local and global 
phosphor heterogeneity and, as assumed a priori, the local hetero-
geneity constitutes but a fraction of the global field heterogeneity.

From the standard deviations one can conclude that the variabil-
ity for phosphor is largest in cultivated field B.

Multivariate Data Analysis (MVDA)
Clear limitations and attending misinterpretations were found by the 
univariate approach. This is due to the fact that cultivated fields 
apparently do not have the same levels of elevated phosphor con-
centration. But even though the P concentration is low, field A is 
actually cultivated as shown by irrefutable archeological evidences. 
Perhaps such relationships can be better appreciated from a mul-
tivariate approach when considering a range of 15 elements simul-
taneously?

MVDA is an approach in which the covariance structure of differ-
ent datasets is modeled and visualized based on the correlations 
between the variables included. MVDA contains different methods 
that can handle different data analysis objectives. One of the pow-
erful tools is Principal Component Analysis (PCA), which reveals 
data structures (exploratory data analysis) in two complementary 
plots, the so-called scores and loadings plots (Esbensen (2010), 
Martens & Næs (1989)). Results of PCA carried out on soil metal 
concentrations are depicted in Figures 4–6 (41 objects and 15 vari-
ables). PCA on this data set will also allow to survey heterogeneity 
in the different fields due to the two different experimental designs.

Field characterization
Figure 4 is a first PCA visualization of the overall structure (score plot 
t1-t3), which depicts the variance-maximized relationships between 
the three fields. Based on the information modeled by PC 1 and 

PC 3, three clear data groupings (data classes) can be identified, 
helped along with the known archeological field assignment anno-
tation (A, B, X), which is used to draw convex polygons enveloping 
the fields. The three fields outline a trend from the uncultivated field 
X to the two cultivated fields A and B. The latter two fields are only 
very slightly overlapping due to their distinct geochemistry finger-
prints. Based on this simple score plot it is possible to discriminate 
fully between these two agricultural groups with ease and certainty, 
but no information about the geochemistry and which elements are 
causing the between-group trend has been identified – yet. For this 
the complementary loading plot is needed, in which is depicted the 
correlation relationships between all the variables involved in the 
data analysis.

The loading plot, Figure 6, reveal that the strong mutual corre-
lation between [P, Zn, Fe, Mn] is the defining feature for the two 
cultivated fields A & B, allowing one to conclude that the levels of 
these elements are elevated in these fields. Due to the group trend 
from uncultivated to cultivated, which is most pronounced in the 
vertical direction along PC 3, Mn would appear to be the element 
that correlates strongest with the cultivated group. Conversely Pb 
is correlating strongest with the uncultivated field X along PC 1 and 
B along PC 3.

The multivariate approach is clearly useful for distinguishing 
between cultivated and uncultivated fields employing 15 geochemi-
cal elements instead of one.

 

 

Figure 4. PCA score plot t1-t3 of the complete data set. Convex polygons surround data from each of the three fields (X, A, 
B), see text for details. 
   
Figure 4. PCA score plot t1-t3 of the complete data set. Convex poly-
gons surround data from each of the three fields (X, A, B), see text for 
details.

 

 

Figure 5. PCA score t1-t3 plot, annotated with convex polygons for the three local box experiments only (heavy lines). 
Relationships to field-wide classifications (in Fig. 4) indicated by stippled lines 
   
Figure 5. PCA score t1-t3 plot, annotated with convex polygons for the 
three local box experiments only (heavy lines). Relationships to field-wide 
classifications (in Fig. 4) indicated by stippled lines

Table 1. Phosphorous data characterisation (ICP) 

ICP results for the three boxes

Cultivated field A

 9 9w 9x 9y 9z

Phosphor (mg/L) 1,396 1,288 1,448 1,360 1,274

Average 1,353

Std. Deviation 0,073125

Cultivated field B

 30 30w 30x 30y 30z

Phosphor (mg/L) 2,275 3,573 2,898 4,155 3,446

Average 3,269

Std. Deviation 0,713165

Uncultivated field X

 13 13w 13x 13y 13z

Phosphor (mg/L) 1,344 1,548 1,563 1,317 1,115

Average 1,377

Std. Deviation 0,185182
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The field replicate experiment also allows a display of the global 
heterogeneity variations within each field. By use of “connecting 
lines” one can direct attention to the convex heterogeneity enve-
lope for each field and compare them, which is the annotation used 
in Figure 4. From this one can argue that they are displaying almost 
the same degree of field heterogeneity but with different elements 
as the largest contributors, which can be studied by a more detailed 
interpretation of Figure 6.

Local heterogeneity characterization
To illustrate the ‘local’ embedded replicate experiment, the same 
score plot, Figure 5, can be used again but for this purpose the 
connecting lines now only frame the sample subsets from the 
three embedded boxes, emphasizing the local heterogeneity. It is 
observed that the largest local heterogeneity is indeed found within 
field B, with much smaller variabilities for field A and X, which show 
somewhat similar local heterogeneities. From this plot it is also pos-
sible to point out potential outliers.

Interestingly the convex polygon that pictures the heterogeneity 
of uncultivated field X is found as an end-member of the entire field 
heterogeneity – without the embedded replicate experiment one 
could perhaps have been led to conclude that this sample could 
be an outlier.

The above first interpretations from a simple PCA shows the 
strength of replication experiments on both field and local scales 
and that the local heterogeneity can vary among, and between 
fields of different status even. Though small, the present data set is 
complex to a non-trivial extent, precluding meaningful data analysis 
based on only one, traditional parameter (P). The complexity is eas-
ily and effectively delineated in full measure however when based on 
the chemometric multivariate approach, PCA1,4.

The present pilot study data set is not large enough to make a 
reasonable validation of the strength of PCA solutions calculated. 
For this it is necessary to invoke a test set, a new data set from 
similar fields, also taking in at least one of the present fields for 
re-sampling as well (to be carried out in the summer 2015). Test 
set validation forms an essential part of proper chemometric data 
analysis1,4.

Conclusion
Based on a chemometric multivariate discrimination along PC 3, it 
is fully possible to distinguish between cultivated and uncultivated 

Celtic fields on the island of Bornholm – a task for which the tradi-
tional P-based univariate approach fails (in the areas investigated 
here). The present results can therefore be of significant help for 
archeologists, who until recently would have classified cultivated 
field A and perhaps many others also, as uncultivated using the 
traditional univariate P-approach. The multivariate approach is able 
to yield much more reliable and trustworthy results.

This holds true if – and only if – sampling is done in a representa-
tive fashion however, eliminating the majority of all ISE and minimize 
CSE. Geochemical data typically can contain up to 50% or so ran-
dom data variance (‘data analytical noise’), so PCA decomposition 
is essential (‘shredding data structure from noise’).

In this pilot project four elements showed the strongest correla-
tion with the cultivated fields and especially Mn was found to be of 
pronounced influence. Sparse knowledge as to why Mn, Fe and 
Zn behave in this correlated fashion with P is raising interest in fur-
ther geochemical and/or agricultural studies. These relationships 
could only have been discovered using the chemometric PCA. It 
will almost always be of interest to increase the number of elements 
analyzed and e.g. Cobalt should be an element that are of signifi-
cance in the archeological world.

Through two different experimental designs it was found that 
each field is characterized by quite similar overall heterogeneities, 
and that the local heterogeneity (embedded box experiments) was 
indeed significantly less extensive, Figure 5. The largest heteroge-
neity was found in cultivated field B, which also had the largest 
levels of Fe, Zn, P and Mn, Figure 4-6. Geochemical multi-element 
signatures successfully define different data classes (fields) outlining 
their internal structures and variable correlations. Why the unculti-
vated field is particularly strongly correlated with Pb and B is not 
fully understood at present, an issue that is incorporated in the 
planned follow-up studies (2015).

All the above findings could only have been discovered using 
MVDA: Archeology meets TOS meets Chemometrics.
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