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Heterogeneity Tests have been very popular for the last 30 years and there are several versions of them such as the method of 
choice used by François-Bongarçon to quantify and minimize QFE1 which is a combination of the Fundamental Sampling Error and 
the Grouping and Segregation Error and sometimes Analytical Error. A more recent version called “segregation free analysis for 
calibrating the constants K and x” is used by Minnitt, and an older, obsolete version using fragments collected one by one at random 
from several size fractions to calibrate the constant K was used a long time ago by Gy and Pitard. All these methods have their merits 
and pitfalls. The common pitfall is that they all depend on the collection of a representative composite sample consisting of about 
half a ton of material. In Mineral Processing it is well known how difficult it is for geologists to provide a representative sample from 
a given geological unit to perform reliable metallurgical testing; the same difficulties are encountered in performing Heterogeneity 
Tests. Furthermore, experience clearly shows that for trace constituents such as gold, many tons should be collected to obtain a 
reliable composite. Perhaps there is a more representative way to collect the information necessary to calculate the variance of the 
Fundamental Sampling Error FSE, which can support and complement the method of choice referred to earlier. This paper suggests 
that all the necessary information can be obtained by slightly modifying the logging practices of geologists. From such observations, 
reliable histograms of the size distribution of particles of the mineral of interest can be made representing the properties of an entire 
geological unit. Such information can be obtained at an early phase of exploration leading to an unmistakable definition of the 
sampling constant K, and possibly an accurate definition of the mathematical model of the liberation factor leading to the constant x; 
using modern microscopy the mineralogist can define the evolution of the liberation factor as a function of increasing comminution 
better than anyone else. Furthermore, this paper suggests that the determination of the liberation factor is no longer a critical factor, 
though most certainly useful, if using the information from modified logging practices and two old formulas suggested by Gy in the 
50’s instead of his famous formula using the liberation factor.

Introduction

T
he following material should not be perceived as a replace-
ment for the method of choice to estimate constants K 
and x in a formula suggested by François-Bongarçon to 
quantify the variance of the short-range Quality Fluctua-

tion Error QFE1 affecting splitting processes in routine sampling and 
subsampling protocols. The suggested calibration was approved 
as a method of choice in a common publication by Pitard and Fran-
çois-Bongarçon (2011)1 and should remain so as far as sampling 
practitioners are concerned. However, Heterogeneity Tests are far 
from perfect and no matter how careful practitioners are, there are 
pitfalls that can be prevented by paying attention to arguments pre-
sented in this paper. Therefore the only objective is to suggest to 
geologists and mineralogists that early on they can provide valuable 
information by adding the necessary observations on the drilling 
log and by making simple mineralogical tests. The added informa-
tion can help to prevent great mistakes in the ways exploration and 
grade control data are looked at. But first some paradigms that are 
well accepted by sampling experts should be eliminated.

Poisson Processes and liberation issues
In the mind of many people a Poisson Process cannot take place 
unless the constituent of interest particles (e.g., gold particles) are 
liberated from their rock matrix; there is nothing that can be so far 
from the truth. Such belief is based on the fact that gold particles 
should be randomly distributed, but obviously they are not. There 
are plenty of geological explanations for in-situ gold particles to be 
distributed in a certain area of a small ore block (e.g., 15 × 15 × 15 
meters). Therefore, someone may rightly object to using a Poisson 

model which is the simplest possible and most random way in 
which we may explain why the gold particles are where they are. 
However, all this assumes some a priori knowledge of the regionali-
zation within that little block. We may have some of that knowledge 
between blocks, but not necessarily within any given block.

Therefore, before going any further, we must elaborate on the 
paradigm of being an observer, since the observer has no idea 
where the gold in that block is. He may know there is gold, but he 
does not know where. The resulting effect is that when he drills that 
block, and within that block there may be 1, 2, 3, or more clus-
ters of gold particles somewhere, the location to drill chosen by the 
observer who knows nothing ahead of time is a random process 
of its own, even if the gold is not strictly distributed at random. So, 
the resulting gold content of that core, within that block, can be 
assimilated to a random process, not because of the way it is dis-
tributed in the deposit, but because of what the observer is doing 
with the selected location and selected basic volume of the support 
of observation as he becomes a participant; there is a subtle differ-
ence. It is exactly the same thing for coarse fragments in which the 
gold is not necessarily liberated.

For the purist who rightly insists that random variables be defined 
by reference to an appropriate probability block it is not much of 
a loss to take the Poisson model as a good tool to help us, espe-
cially when the observer is personally responsible for introducing the 
Poisson Process in the first place (i.e., no a priori knowledge and an 
extremely small support volume).

For anyone who may have the desire to better understand what 
is meant by “Poisson Process” Kingman’s book, 1993, is an excel-
lent one2.
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With this knowledge in mind it is not difficult to demonstrate that 
collected data for most trace constituents, and gold is one of them, 
are affected by a Poisson Process of some kind that was originally 
introduced because of the limited volume of the drilling support. 
This has huge implications in the collection of representative sam-
ples to perform Heterogeneity Tests and ultimately calibrate con-
stants K and x.

Poisson Processes and trace constituent size-
grade trends
To simplify the discussion let’s take the example of gold as a trace 
constituent, keeping in mind it is applicable to any trace constitu-
ent. When there is a large in-situ nugget effect combined with a 
clustering effect of the gold particles that don’t like to be alone, 
the distance between clusters within mineralization increases. Many 
samples do not contain coarse gold as they should. Later on, when 
split duplicates are taken, and ultimately fire assay duplicates are 
taken, since they had no coarse gold to begin with, they give the 
illusion that low grade samples represent areas where no coarse 
gold is present, even though it is true for samples coming from 
areas where indeed there is no coarse gold. Again, the observer 
will not know the difference. So, let’s not feel safe by saying the 
low grade material does not contain coarse gold; it most certainly 
will in a substantial amount of cases! This deserves further thinking 
from geologists, grade control engineers, and geostatisticians. The 
author became sure of such a property in several projects where 
grade control vastly underestimated the gold grade going to the 
plant for no apparent, good reason. The same problem was clearly 
observed for arsenic, molybdenum and cobalt minerals. It was even 
observed for impurities such as silica and aluminum in iron ore, for 
sulfur in coal, for silica in bauxite, etc… Basically, the problem is 
not rare.

Indirect implications for heterogeneity tests
The appropriate approach for conducting Heterogeneity Tests for 
major and some minor constituents has been well established and 
the objective of this paper is not to question this at all. However, for 
low grade gold deposits for example, the conventional approach 
may indeed work well for deposits with finely disseminated gold, but 
it may be misleading when gold particles are large (e.g., superior to 
a few hundred microns, or when fine gold or any other trace con-
stituent is clustering). The author witnessed many such cases and 
clearly there is a need to suggest a strategy to make sure sampling 
practitioners are not reaching over-optimistic conclusions. Again, 
without understanding how Poisson Processes may take place, the 
following material may seem bizarre for the reader.

In a letter criticizing François-Bongarçon’s work Smee and Stan-
ley (2005)3 said “Gy’s formula is based on and derivable from the 
binomial theorem. Consequently, Gy’s formula doesn’t apply to 
samples containing very low concentrations of elements contained 
in rare grains (e.g., Au, PGE, diamonds, etc.), where a Poisson rela-
tion is applicable. Our avoidance in referencing Gy stems directly 
from the fact that we consider samples containing nuggets to be 
a scenario that is inconsistent with Gy’s approach.” This statement 
shows sampling practitioners in the world of Measurement Uncer-
tainty vastly misunderstand Gy’s work and have no idea about the 
many subtleties of his propositions and therefore they are in no 
position to criticize those who apply his work in a wise and knowl-
edgeable way.

First, the Poisson model is a limit case of the Binomial Model use 
by Gy, and therefore a close “cousin” and Gy was perfectly aware 
of nugget problems. Nobody who is knowledgeable enough would 
use Gy’s general formula to calculate the variance of FSE for a sam-
ple mass that is too small by several orders of magnitude. However, 
anyone can turn the formula around and calculate the necessary 
sample mass that is required to prevent the introduction of a Pois-
son Process, a domain for which the formula is perfectly applicable. 
This is exactly what Gy always did and it is what is suggested in 
this paper.

Cardinal Rule #1 in sampling
Biases in sampling are the worse misfortune that may take place, 
and were the driving force to establish the many rules of sampling 
correctness, so theoretical developments of equi-probable sam-
pling made by Gy and Matheron could apply in practice. This led to 
the many advances to minimize Increment Delimitation Error, Incre-
ment Extraction Error, Increment Preparation Errors and Increment 
Weighting Error which are the biggest contribution of Gy’s theory 
by far according to his own words. Is this sufficient to prevent sam-
pling biases? The answer is no. For example, it is well known that 
the content of a constituent of interest may drastically change from 
one size fraction to another. Then, plain logic would suggest the 
following Cardinal Rule in sampling should never be broken up: a 
sample mass that is too small to well represent all size fractions 
cannot provide a sample representative of anything else; this has 
huge implications for any kind of Heterogeneity Test.

Successive stages of sampling and sub-sampling may each 
require compliance with a pre-established limit that highly depends 
on the practitioner’s objectives as suggested by Pitard (2013)4. But, 
the most difficult size fraction to properly represent in the sample 
is obviously the one containing the largest fragments. This strongly 
suggests some long forgotten formulas from Pierre Gy should be 
brought back to the rescue and a careful discussion should follow. 
Let’s be clear, without a good understanding of these formulas there 
is no possible understanding of Gy’s subtle work.

Gy (1971)5 and Pitard (1993)6 derived the following formula to 
calculate the variance of Fundamental Sampling Error to be used 
to make sure a given size fraction is well represented in collected 
samples.
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Notations are:
LC a size fraction of interest
aLc the proportion of LC in the lot L
MS the mass of the collected sample
ML the mass of the lot to be sampled
FLc the average fragment of the size fraction LC

dFLc the size of the average fragments in the size fraction of interest
dFLx the size of the fragments in the other size fractions besides the 
one of interest
f a fragment shape factor
r the average density of the fragments

This formula can often be simplified for many applications:
 ■ If ML > 10 MS

 ■ If dFLc is not much different from d defined as the size opening of 
a screen that would retain 5% of the material by weight.
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 ■ If aLc is small, then
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and if dFLc = d
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This convenient formula provides a filter to make sure the expo-
nent x for d is not abused when used in a formula like one sug-
gested by François-Bongarçon:
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where:

K = f · g · c · (dl)
r and x = 2 – r

K and x are the key factors to quantify in various experiments. If 
x < 3, clearly it is not an issue when the values for d are below 1 cm, 
however it can indeed become an issue for large values of d such 
as for sampling run off mine material.

Example of application
If a run off mine material has a value of 10 cm for d and a 1-ton sam-
ple is required to represent the coarsest fragments with an uncer-
tainty of 15% (1s), it would be unfortunate to recommend a much 
smaller mass on the basis that x is much smaller than 3. Obviously, 
the value used for K has a big influence on the outcome of this dis-
cussion; indeed if K is very high it is likely that there is no problem.

Cardinal Rule #2 in sampling
The size dM of the grains of mineral of interest, liberated or not, 
must play an important role in the necessary sample mass. dM can 
also be a cluster equivalent when several of those grains are very 
close to one another within a core sample or within a larger frag-
ment. Gy corrected for this problem in an elegant way, not always 
well understood by practitioners, with his liberation factor. In other 
words, in his original formula with x = 3, both concepts d and dM 
were preserved; be aware it is no longer the case with formula [4].

Often, especially for trace constituents, it is difficult and impracti-
cal to determine the liberation factor with sufficient accuracy, and 
this makes some formulas vulnerable. Enormous literature has been 
written on this subject, the best one by François-Bongarçon (2000, 
2001)9,10. However, it is not a must to use the conventional, favorite 
approach suggested by Gy’s general and well-known formula. The 
following suggestion is pragmatic, accurate, and falls in line with 
Ingamells’ approach; it is summarized in the three following state-
ments:

 ■ Use Gy’s suggested approach for liberated gold when dM , which 
is dAu in formula [5], becomes the dominant factor; it can be gen-
eralized to many other components of interest.
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 ■ Verify that the sample mass suggested by the generalized ver-
sion of equation [4] is compatible with the mass necessary to 
represent all size fractions in the lot by using equation [1], or [3].

 ■ The largest required sample mass for a pre-selected precision, 
obtained by equation [1] or [3] (i.e., using d) and equation [5] (i.e., 
using dM defined below) necessarily takes priority on deciding 
what the sampling protocol should be.
Generalization of equation [5] by defining new notations:

fM the shape factor of the constituent of interest
gM the particle size distribution factor of the constituent of interest
rM the density of the constituent of interest
dM the maximum size of the constituent of interest particle, liberated 
or not, or cluster of such particles contained in a single fragment 
of the surrounding matrix; dM is defined as the size of a screen that 
would retain no more than 5% by weight of all the particles of the 
constituent of interest.

Thus, we obtain the very useful simplified formula:
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Useful sampling nomographs can be calculated with the following 
formula:
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The great advantage of this approach is its accuracy and the 
easiness to collect the relevant and necessary information through 
microscopic observations, and it should somewhat reconcile Gy, 
Ingamells, and François-Bongarçon. In the event reconciliation is 
not possible it should be a clear indication some heterogeneity 
properties of the constituent of interest are still unknown and further 
investigation is needed. This debate naturally leads to Cardinal Rule 
#3.

Another advantage of equation [7] is for subsampling finely 
ground material, as some constituents such as soft ones like gold, 
molybdenite, galena and many more do not comminute well. Very 
hard minerals like chromite may show the same problem. For exam-
ple a sample pulverized to 99% minus 106 microns may still contain 
a 300-micron gold particle making all other formulas weak and per-
haps misleading.

Cardinal Rule #3 in sampling
As Pierre Gy said many times, especially when criticizing the work 
of Richard (1908)15, when deciding what the exponent of d should 
be, and therefore the constant x, there is a confusion between FSE, 
QFE1, and even the Analytical Error AE poorly defined by non-chem-
ists and TOS experts. This confusion has been responsible for over 
a century for total chaos, and still remains an issue today. Problems 
are:
1) For very fine material the variance of FSE rapidly becomes a neg-

ligible factor unless unrecognized delayed comminution takes 
place for the constituent of interest.

2) The segregation error can be huge as the constituent of interest 
is liberated and possibly of a very different density than the rest of 
the material.

3) Taking the optimistic assumption that analytical increments are 
taken perfectly at random (an absolute requisite for Gy’s definition 
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of GSE), which is rarely the case at the balance room of a labora-
tory, the variance of GSE can become small indeed; however it 
takes work an analytical chemist is not willing to spend the time 
on. As a result, the segregation error which is no longer GSE, 
may become vastly underestimated because it no longer obeys 
rules set by the TOS.

4) The Analytical Error AE cannot be estimated by doing replicate 
assays that include the last FSE and last GSE. Let’s assume the 
chemist takes a 30-g analytical subsample for fire assay; the tak-
ing of that sample has nothing to do with the Analytical Error 
which includes fusion, cupellation, acid digestion of a bead, con-
tamination, losses, spectrometer calibration or use of a precision 
balance, additive and proportional interferences, etc… In other 
word it is very hard, if not impossible in some cases to appreciate 
what AE really is. Furthermore, AE is extremely operator depend-
ent. There is no such things as a bad analytical method, there are 
only incompetent analysts who apply it for the wrong conditions.

5) There is no such thing as a segregation free analysis when taking 
replicate samples in a given size fraction as particles segregate 
even if they are all the same size. They will most certainly seg-
regate because of density, shape, electrostatic property differ-
ences, etc…
All this is clearly summarized in the sketch illustrated in Figure 

1 and very familiar to Visman, Ingamells and Gy through verbal 
conversations, and many others who were wise enough to admit 
that what they measured with replicate samples or replicate assays 
may have nothing to do with the variance of FSE. It can be noticed 
as well that in this figure when segregation is mentioned it is not 

necessarily referring to GSE as defined in the TOS; the subtle dif-
ference depends on what the operator may do. The only thing the 
author asks is not much to comply with: call variance sources by 
their respective name instead of calibrating x to compensate for 
things that are not clearly defined or understood. An example is 
appropriate: an operator shakes a laboratory pulp to collect a tiny 
analytical sample, then makes the assumption there is no longer 
any significant segregation in the pulp, and finally takes one or two 
tiny increments with no respect to the TOS. The resulting variance, 
after guessing what the analytical variance should be and remov-
ing it is found to be large. The operator put the blame on a large 
variance of FSE when it is clear that he was introducing a massive 
segregation variance because of the way he collected the incre-
ments. In this particular case he was introducing a variance that has 
nothing to do with FSE, nor GSE, because all the subtle principles 
clearly defined in TOS were completely ignored therefore prohibit 
the segregation variance to be a random one as it should be.

Suggesting a new integrated iterative approach
Iteration is the word of wisdom in sampling. The following three 
steps are not necessarily suggested in chronological order. Rather, 
each step can be taken simultaneously which ultimately will provide 
confidence that no stone has been left unturned.

Step #1: The mandatory calibration of K and x
The calibration of constants K and x in equation [4] as suggested 
by François-Bongarçon is a mandatory step that is non-negotiable; 
please notice notations in that formula very carefully. Indeed, the 
use of the notation QFE1 is valid only if the operator has been col-
lecting many increments in full compliance with sampling correct-
ness, which is a very optimistic assumption as experience proves. If 
not in full compliance, then the resulting variance is anyone’s guess 
because there is no longer any theoretical development possible as 
demonstrated by Gy and Matheron. Such calibration allows mini-
mizing the variance of the Fundamental Sampling Error and also 
measures the leftover effect of the Grouping and Segregation Error 
depending on the equipment used to split samples at the sample 
preparation room and at the laboratory, and on the operator’s train-
ing which can be a huge factor. For the details of such procedure 
the reader is referred to François-Bongarçon’s publications (2000 
and 2001)9.10.

Step #2: The geologist to the rescue
It is necessary to better log the properties of gold in each geologi-
cal unit. With minor modifications the same list may easily apply to 
other constituents of interest in iron ore, in coal, in porphyry cop-
per deposits, and others, gold being only a convenient example. 
For each core sample within substantial mineralization the following 
information should be carefully logged:

 ■ Where is the gold?
 ■ What are the associations of gold?
 ■ How much gold is finely disseminated within sulfides, such as 
pyrite or other minerals?

 ■ How much gold is coarse and perhaps nearby other minerals?
 ■ Are gold and pyrite or other mineral occurrences associated 
with narrow or large quartz veins? If so, are there several quartz 
events?

 ■ Study size distribution of gold particles. A good histogram is 
needed for each geological unit. After observing several thousand 

Figure 1. Replicate assays variance and its components.
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samples within mineralization it should be possible to roughly es-
timate the size dM above which only 5% of the gold can report.

 ■ Equally important, study the size distribution of gold particle clus-
ters; in other words when you see one gold particle (measure 
it), how many more gold particles are in the immediate vicini-
ties? e.g., 10 or more within 100 cm3? After observing several 
thousand samples within mineralization it should be possible to 
roughly estimate the size d¢M above which only 5% of the gold 
can report as cluster equivalents.

 ■ Etc…

Step #3: The mineralogist to the rescue
Suarez and Carrasco (2011)13 demonstrated in an unambiguous 
way that careful mineralogical studies can provide valuable infor-
mation to model the variability of the liberation factor as a function 
of comminution stage. It is very unfortunate such study does not 
generate more interest. The same study suggests that the maxi-
mum content model suggested many years ago by Gy is a very 
reliable model that was used all the time in a mineral processing 
research laboratory (Minemet); see Gy (1956)11 and Pitard (19936 

and 200914).

Step #4: The selected sample or subsample 
mass must fairly represent the coarsest 
fragments
This task is easily done by using formulas [1] or [3].

Step #5: The selected sample or subsample 
mass must fairly represent the largest particles 
of a given constituent of interest
This task is done by using formula [7]. This is critically important for 
constituents showing delayed comminution. Usually, soft minerals 
such as gold, galena, molybdenite and very hard minerals such as 
chromite can show such problem. As a good example, the coarse 
gold case shown by Pitard and Lyman (2013)12 clearly shows that 
a Heterogeneity Test performed by using conventional 30-g fire 
assays would most likely have led to very misleading conclusions; 
the test is not the problem, but the completely inappropriate 30-g 

subsample is the issue, in other words the operators would have 
used the wrong tools.

Step #6: A logical flow sheet to perform 
Heterogeneity Tests
Figure 2 summarizes the necessary steps to perform a reliable Het-
erogeneity Test for various constituents of interest during explora-
tion and grade control; the approach can easily be extended to 
other materials in other industries. The reconciliation box has a very 
important mission in cases where conclusions are grossly differ-
ent: a logical explanation must be found that may lead to important 
decisions concerning the selection of fully optimized sampling and 
subsampling protocols.
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